Advertisements
Advertisements
प्रश्न
Find `"dy"/"dx"` if, yex + xey = 1
उत्तर
yex + xey = 1
Differentiating both sides w.r.t. x, we get
`"d"/"dx" ("ye"^"x") + "d"/"dx" ("xe"^"y") = 0`
∴ `"y" "d"/"dx" ("e"^"x") + "e"^"x" "dy"/"dx" +"x" "d"/"dx" ("e"^"y") + "e"^"y" "d"/"dx" ("x") = 0`
∴ `"y" "e"^"x" + ("e"^"x") "dy"/"dx" + "x"("e"^"y") "dy"/"dx" + "e"^"y"`
∴ `("e"^"x" + "x""e"^"y") "dy"/"dx" = - ("e"^"y" + "y" "e"^"x")`
∴ `"dy"/"dx" = (- ("e"^"y" + "y" "e"^"x"))/("e"^"x" + "x""e"^"y")`
APPEARS IN
संबंधित प्रश्न
Find `dy/dx` in the following:
xy + y2 = tan x + y
Find `dx/dy` in the following.
x2 + xy + y2 = 100
Find `dy/dx` in the following:
sin2 x + cos2 y = 1
Find `dy/dx` in the following:
`y = sin^(-1)((2x)/(1+x^2))`
if `x^y + y^x = a^b`then Find `dy/dx`
if `(x^2 + y^2)^2 = xy` find `(dy)/(dx)`
Find `dy/dx if x^3 + y^2 + xy = 7`
Find `(dy)/(dx)` if `y = sin^-1(sqrt(1-x^2))`
If ex + ey = ex+y, then show that `"dy"/"dx" = -e^(y - x)`.
Find `"dy"/"dx"`, if : x = a(1 – cosθ), y = b(θ – sinθ)
Find `"dy"/"dx"` if : x = t + 2sin (πt), y = 3t – cos (πt) at t = `(1)/(2)`
Differentiate `tan^-1((sqrt(1 + x^2) - 1)/(x)) w.r.t tan^-1((2xsqrt(1 - x^2))/(1 - 2x^2))`.
Find `(d^2y)/(dx^2)` of the following : x = sinθ, y = sin3θ at θ = `pi/(2)`
If x = cos t, y = emt, show that `(1 - x^2)(d^2y)/(dx^2) - x"dy"/"dx" - m^2y` = 0.
Find the nth derivative of the following : (ax + b)m
Find the nth derivative of the following : cos x
Find the nth derivative of the following : cos (3 – 2x)
Choose the correct option from the given alternatives :
If f(x) = `sin^-1((4^(x + 1/2))/(1 + 2^(4x)))`, which of the following is not the derivative of f(x)?
Choose the correct option from the given alternatives :
If `xsqrt(y + 1) + ysqrt(x + 1) = 0 and x ≠ y, "then" "dy"/"dx"` = ........
Solve the following :
f(x) = –x, for – 2 ≤ x < 0
= 2x, for 0 ≤ x < 2
= `(18 - x)/(4)`, for 2 < x ≤ 7
g(x) = 6 – 3x, for 0 ≤ x < 2
= `(2x - 4)/(3)`, for 2 < x ≤ 7
Let u (x) = f[g(x)], v(x) = g[f(x)] and w(x) = g[g(x)]. Find each derivative at x = 1, if it exists i.e. find u'(1), v' (1) and w'(1). If it doesn't exist, then explain why?
Differentiate the following w.r.t. x : `cos^-1((sqrt(1 + x) - sqrt(1 - x))/2)`
If y2 = a2cos2x + b2sin2x, show that `y + (d^2y)/(dx^2) = (a^2b^2)/y^3`
If log y = log (sin x) – x2, show that `(d^2y)/(dx^2) + 4x "dy"/"dx" + (4x^2 + 3)y` = 0.
If log (x + y) = log (xy) + a then show that, `"dy"/"dx" = (- "y"^2)/"x"^2`.
Choose the correct alternative.
If x = `("e"^"t" + "e"^-"t")/2, "y" = ("e"^"t" - "e"^-"t")/2` then `"dy"/"dx"` = ?
If y = `("x" + sqrt("x"^2 - 1))^"m"`, then `("x"^2 - 1) "dy"/"dx"` = ______.
If `"x"^"a"*"y"^"b" = ("x + y")^("a + b")`, then show that `"dy"/"dx" = "y"/"x"`
If `sqrt(x) + sqrt(y) = sqrt("a")`, then `("d"y)/("d"x)` is ______
`(dy)/(dx)` of `2x + 3y = sin x` is:-
Find `(dy)/(dx)`, if `y = sin^-1 ((2x)/(1 + x^2))`
If y = `e^(m tan^-1x)` then show that `(1 + x^2) (d^2y)/(dx^2) + (2x - m) (dy)/(dx)` = 0
If y = y(x) is an implicit function of x such that loge(x + y) = 4xy, then `(d^2y)/(dx^2)` at x = 0 is equal to ______.
Find `dy/dx if, x= e^(3t), y = e^sqrtt`
If log (x+y) = log (xy) + a then show that, `dy/dx= (-y^2)/(x^2)`
Solve the following.
If log(x + y) = log(xy) + a then show that, `dy/dx = (-y^2)/x^2`
Find `dy/dx` if, `x = e^(3t), y = e^(sqrtt)`