मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

Find dydxdydx if : x = t + 2sin (πt), y = 3t – cos (πt) at t = 12 - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Find `"dy"/"dx"` if : x = t + 2sin (πt), y = 3t – cos (πt) at t = `(1)/(2)`

बेरीज

उत्तर

x = t + 2sin (πt), y = 3t – cos (πt)
Differentiating x and y w.r.t. t, we get
`"dx"/"dt" = "d"/"dt"[t + 2sin(pit)]`

= `"d"/"dt"(t) + 2."d"/"dt"[sin(pit)]`

= `1 + 2 xx cos(pit)."d"/"dx"(pit)`
= 1 + 2cos(πt) x π x 1
= 1 + 2π cos (πt)
and
`"dy"/"dt" = "d"/"dt"[3t - cos(pit)]`

= `3 xx 1 - [- sin(pit)]."d"/"dt"(pit)`
= 3 + sin (πt) x π x 1
= 3 + π sin (πt)
∴ `"dy"/"dx" = (("dy"/"dt"))/(("dx"/"dt")`

= `(3 + pi sin(pit))/(1 + 2pi cos(pit)`

∴ `(dy/dx)_("at"  t = 1/2)`

= `(3 + sin(pi/2))/(1 + 2picos(pi/2)`

= `(3 + pi xx 1)/(1 + 2pi(0)`
= 3 + π.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 1: Differentiation - Exercise 1.4 [पृष्ठ ४८]

APPEARS IN

व्हिडिओ ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्‍न

If xpyq = (x + y)p+q then Prove that `dy/dx = y/x`


Find dy/dx if x sin y + y sin x = 0.


Find `dy/dx` in the following:

ax + by2 = cos y


Find `dy/dx` in the following:

`y = sin^(-1)((2x)/(1+x^2))`


if `x^y + y^x = a^b`then Find `dy/dx`


if `(x^2 + y^2)^2 = xy` find `(dy)/(dx)`


Is |sin x| differentiable? What about cos |x|?


If f (x) = |x − 2| write whether f' (2) exists or not.


Let \[f\left( x \right)\begin{cases}a x^2 + 1, & x > 1 \\ x + 1/2, & x \leq 1\end{cases}\] . Then, f (x) is derivable at x = 1, if 


Find `"dy"/"dx"` ; if x = sin3θ , y = cos3θ


Find `"dy"/"dx"` ; if y = cos-1 `("2x" sqrt (1 - "x"^2))`


Find `(dy)/(dx) if y = cos^-1 (√x)`


If x = tan-1t and y = t3 , find `(dy)/(dx)`.


If `sin^-1((x^5 - y^5)/(x^5 + y^5)) = pi/(6), "show that" "dy"/"dx" = x^4/(3y^4)`


Find `"dy"/"dx"` if x = at2, y = 2at.


Find `"dy"/"dx"` if x = a cot θ, y = b cosec θ


Find `"dy"/"dx"`, if : x = sinθ, y = tanθ


Find `"dy"/"dx"`, if : `x = cos^-1(4t^3 - 3t), y = tan^-1(sqrt(1 - t^2)/t)`.


Find `"dy"/"dx"` if : x = cosec2θ, y = cot3θ at θ= `pi/(6)`


Find `"dy"/"dx"` if : x = a cos3θ, y = a sin3θ at θ = `pi/(3)`


Find `dy/dx` if : x = 2 cos t + cos 2t, y = 2 sin t – sin 2t at t = `pi/(4)`


If x = `(t + 1)/(t - 1), y = (t - 1)/(t + 1), "then show that"  y^2 + "dy"/"dx"` = 0.


Differentiate `sin^-1((2x)/(1 + x^2))w.r.t. cos^-1((1 - x^2)/(1 + x^2))`


Differentiate xx w.r.t. xsix.


Find `(d^2y)/(dx^2)` of the following : x = a(θ – sin θ), y = a(1 – cos θ)


Find `(d^2y)/(dx^2)` of the following : x = sinθ, y = sin3θ at θ = `pi/(2)`


If y = x + tan x, show that `cos^2x.(d^2y)/(dx^2) - 2y + 2x` = 0.


If y = sin (m cos–1x), then show that `(1 - x^2)(d^2y)/(dx^2) - x"dy"/"dx" + m^2y` = 0.


Find the nth derivative of the following : eax+b 


Find the nth derivative of the following : cos x


Find the nth derivative of the following:

y = e8x . cos (6x + 7)


Choose the correct option from the given alternatives :

If y = sin (2sin–1 x), then dx = ........


Choose the correct option from the given alternatives :

If y = `tan^-1(x/(1 + sqrt(1 - x^2))) + sin[2tan^-1(sqrt((1 - x)/(1 + x)))] "then" "dy"/"dx"` = ...........


If y `tan^-1(sqrt((a - x)/(a +  x)))`, where – a < x < a, then `"dy"/"dx"` = .........


Choose the correct option from the given alternatives :

If x = a(cosθ + θ sinθ), y = a(sinθ – θ cosθ), then `((d^2y)/dx^2)_(θ = pi/4)` = .........


Choose the correct option from the given alternatives :

If y = `a cos (logx) and "A"(d^2y)/(dx^2) + "B""dy"/"dx" + "C"` = 0, then the values of A, B, C are


Solve the following : 

f(x) = –x, for – 2 ≤ x < 0
= 2x, for 0 ≤ x < 2
= `(18 - x)/(4)`, for 2 < x ≤ 7
g(x) = 6 – 3x, for 0 ≤ x < 2
= `(2x - 4)/(3)`, for 2 < x ≤ 7
Let u (x) = f[g(x)], v(x) = g[f(x)] and w(x) = g[g(x)]. Find each derivative at x = 1, if it exists i.e. find u'(1), v' (1) and w'(1). If it doesn't exist, then explain why?


Differentiate the following w.r.t. x : `sin^2[cot^-1(sqrt((1 + x)/(1 - x)))]`


If sin y = x sin (a + y), then show that `"dy"/"dx" = (sin^2(a + y))/(sina)`.


Differentiate `tan^-1((sqrt(1 + x^2) - 1)/x)` w.r.t. `cos^-1(sqrt((1 + sqrt(1 + x^2))/(2sqrt(1 + x^2))))`


If y2 = a2cos2x + b2sin2x, show that `y + (d^2y)/(dx^2) = (a^2b^2)/y^3`


If log y = log (sin x) – x2, show that `(d^2y)/(dx^2) + 4x "dy"/"dx" + (4x^2 + 3)y` = 0.


Find `"dy"/"dx"` if, x3 + y3 + 4x3y = 0 


Find `"dy"/"dx"` if, yex + xey = 1 


If log (x + y) = log (xy) + a then show that, `"dy"/"dx" = (- "y"^2)/"x"^2`.


Solve the following:

If `"e"^"x" + "e"^"y" = "e"^((x + y))` then show that, `"dy"/"dx" = - "e"^"y - x"`.


Choose the correct alternative.

If ax2 + 2hxy + by2 = 0 then `"dy"/"dx" = ?` 


If y = `("x" + sqrt("x"^2 - 1))^"m"`, then `("x"^2 - 1) "dy"/"dx"` = ______.


State whether the following is True or False:

The derivative of `"x"^"m"*"y"^"n" = ("x + y")^("m + n")` is `"x"/"y"`


If x2 + y2 = 1, then `(d^2x)/(dy^2)` = ______.


If x2 + y2 = t + `1/"t"` and x4 + y4 = t2 + `1/"t"^2` then `("d"y)/("d"x)` = ______


If x = a t4 y = 2a t2 then `("d"y)/("d"x)` = ______


State whether the following statement is True or False:

If `sqrt(x) + sqrt(y) = sqrt("a")`, then `("d"y)/("d"x) = 1/(2sqrt(x)) + 1/(2sqrt(y)) = 1/(2sqrt("a"))`


Differentiate w.r.t x (over no. 24 and 25) `e^x/sin x`


Find `(dy)/(dx)` if x + sin(x + y) = y – cos(x – y)


Find `dy/dx if, x= e^(3t), y = e^sqrtt`


If log(x + y) = log(xy) + a then show that, `dy/dx = (-y^2)/x^2`


Find `dy/dx` if, x = `e^(3t)`, y = `e^sqrtt`


Find `dy/dx if , x = e^(3t) , y = e^sqrtt`


If log (x+y) = log (xy) + a then show that, `dy/dx= (-y^2)/(x^2)`


If y = `(x + sqrt(x^2 - 1))^m`, show that `(x^2 - 1)(d^2y)/(dx^2) + xdy/dx` = m2y


Find `dy / dx` if, x = `e^(3t), y = e^sqrt t` 


Solve the following.

If log(x + y) = log(xy) + a then show that, `dy/dx = (-y^2)/x^2`


Find `dy/dx` if, `x = e^(3t), y = e^sqrtt`


If log(x + y) = log(xy) + a then show that, `dy/dx=(-y^2)/x^2`


If log(x + y) = log(xy) + a, then show that `dy/dx = (-y^2)/x^2`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×