Advertisements
Advertisements
प्रश्न
Find `"dy"/"dx"` if, x3 + y3 + 4x3y = 0
उत्तर
x3 + y3 + 4x3y = 0
Differentiating both sides w.r.t. x, we get,
`"d"/"dx" "x"^3 + "d"/"dx" "y"^3 + 4"d"/"dx" ("x"^3."y") = 0`
`3"x"^2 "d"/"dx" "x" + 3"y"^2 "dy"/"dx" + 4 ["x"^3 "dy"/"dx" + "y" "d"/"dx" ("x"^3)]` = 0
∴ `3"x"^2. (1) + 3"y"^2 "dy"/"dx" + 4 ["x"^3 "dy"/"dx" + "y"(3"x"^2)] = 0`
∴ `3"x"^2 + 3"y"^2 "dy"/"dx" + 4"x"^3 "dy"/"dx" + 12"x"^2"y" = 0`
∴ `(3"y"^2 + 4"x"^3) "dy"/"dx" = − (12"x"^2"y" + 3"x"^2)`
∴ `"dy"/"dx" = (- (12"x"^2"y" + 3"x"^2))/((3"y"^2 + 4"x"^3)) = - (3"x"^2(1 + 4"y"))/(3"y"^2 + 4"x"^3)`
APPEARS IN
संबंधित प्रश्न
Find `dy/dx` in the following:
xy + y2 = tan x + y
Find `dy/dx` in the following:
sin2 x + cos2 y = 1
if `x^y + y^x = a^b`then Find `dy/dx`
if `(x^2 + y^2)^2 = xy` find `(dy)/(dx)`
Show that the derivative of the function f given by
If \[f\left( x \right) = x^3 + 7 x^2 + 8x - 9\]
, find f'(4).
If f (x) = |x − 2| write whether f' (2) exists or not.
Differentiate e4x + 5 w.r..t.e3x
Differentiate tan-1 (cot 2x) w.r.t.x.
If y = `sqrt(cosx + sqrt(cosx + sqrt(cosx + ... ∞)`, then show that `"dy"/"dx" = sinx/(1 - 2y)`.
Find `"dy"/"dx"`, if : `x = cos^-1((2t)/(1 + t^2)), y = sec^-1(sqrt(1 + t^2))`
Find `"dy"/"dx"` if : x = t2 + t + 1, y = `sin((pit)/2) + cos((pit)/2) "at" t = 1`
If 2y = `sqrt(x + 1) + sqrt(x - 1)`, show that 4(x2 – 1)y2 + 4xy1 – y = 0.
If x2 + 6xy + y2 = 10, show that `(d^2y)/(dx^2) = (80)/(3x + y)^3`.
Choose the correct option from the given alternatives :
If y = sec (tan –1x), then `"dy"/"dx"` at x = 1, is equal to
Choose the correct option from the given alternatives :
If y = sin (2sin–1 x), then dx = ........
Choose the correct option from the given alternatives :
If y = `tan^-1(x/(1 + sqrt(1 - x^2))) + sin[2tan^-1(sqrt((1 - x)/(1 + x)))] "then" "dy"/"dx"` = ...........
Choose the correct option from the given alternatives :
If x = a(cosθ + θ sinθ), y = a(sinθ – θ cosθ), then `((d^2y)/dx^2)_(θ = pi/4)` = .........
Suppose that the functions f and g and their derivatives with respect to x have the following values at x = 0 and x = 1:
x | f(x) | g(x) | f')x) | g'(x) |
0 | 1 | 5 | `(1)/(3)` | |
1 | 3 | – 4 | `-(1)/(3)` | `-(8)/(3)` |
(i) The derivative of f[g(x)] w.r.t. x at x = 0 is ......
(ii) The derivative of g[f(x)] w.r.t. x at x = 0 is ......
(iii) The value of `["d"/"dx"[x^(10) + f(x)]^(-2)]_(x = 1_` is ........
(iv) The derivative of f[(x + g(x))] w.r.t. x at x = 0 is ...
Differentiate the following w.r.t. x : `cos^-1((sqrt(1 + x) - sqrt(1 - x))/2)`
Differentiate the following w.r.t. x : `tan^-1[sqrt((sqrt(1 + x^2) + x)/(sqrt(1 + x^2) - x))]`
DIfferentiate `tan^-1((sqrt(1 + x^2) - 1)/x) w.r.t. tan^-1(sqrt((2xsqrt(1 - x^2))/(1 - 2x^2)))`.
Differentiate `tan^-1((sqrt(1 + x^2) - 1)/x)` w.r.t. `cos^-1(sqrt((1 + sqrt(1 + x^2))/(2sqrt(1 + x^2))))`
If y2 = a2cos2x + b2sin2x, show that `y + (d^2y)/(dx^2) = (a^2b^2)/y^3`
Solve the following:
If `"x"^5 * "y"^7 = ("x + y")^12` then show that, `"dy"/"dx" = "y"/"x"`
If log (x + y) = log (xy) + a then show that, `"dy"/"dx" = (- "y"^2)/"x"^2`.
Find `(dy)/(dx)`, if `y = sin^-1 ((2x)/(1 + x^2))`
Differentiate w.r.t x (over no. 24 and 25) `e^x/sin x`
Find `(d^2y)/(dy^2)`, if y = e4x
If y = y(x) is an implicit function of x such that loge(x + y) = 4xy, then `(d^2y)/(dx^2)` at x = 0 is equal to ______.
If y = `sqrt(tan x + sqrt(tanx + sqrt(tanx + .... + ∞)`, then show that `dy/dx = (sec^2x)/(2y - 1)`.
Find `dy/dx` at x = 0.
If log(x + y) = log(xy) + a then show that, `dy/dx = (-y^2)/x^2`
Find `dy/dx` if, `x = e^(3t), y = e^sqrtt`
Find `dy/dx` if, `x = e^(3t), y = e^(sqrtt)`
If log(x + y) = log(xy) + a then show that, `dy/dx = (-y^2)/x^2`