Advertisements
Advertisements
प्रश्न
Differentiate e4x + 5 w.r..t.e3x
उत्तर
Let u = e4x + 5 and v = e3x
`(du)/dx = 4e^(4x + 5) and (dv)/dx = 3e^(3x)`
we have to find `(du)/(dv)`
`(du)/(dv) = ((du)/(dx))/((dv)/(dx)) = [4e^(4x + 5)]/[3e^(3x)]`
= `4/3e^( 4x + 5 - 3x)`
= `4/3e^( x + 5 )`
`therefore (du)/(dv) = 4/3e^( x + 5 )`
APPEARS IN
संबंधित प्रश्न
Find dy/dx if x sin y + y sin x = 0.
Find `dy/dx` in the following:
2x + 3y = sin x
Find `dy/dx` in the following:
sin2 y + cos xy = k
Find `dy/dx` in the following:
sin2 x + cos2 y = 1
If \[f\left( x \right) = x^3 + 7 x^2 + 8x - 9\]
, find f'(4).
Find `(dy)/(dx) if y = cos^-1 (√x)`
Differentiate tan-1 (cot 2x) w.r.t.x.
If ex + ey = ex+y, then show that `"dy"/"dx" = -e^(y - x)`.
If `sin^-1((x^5 - y^5)/(x^5 + y^5)) = pi/(6), "show that" "dy"/"dx" = x^4/(3y^4)`
Find `"dy"/"dx"` if : x = a cos3θ, y = a sin3θ at θ = `pi/(3)`
DIfferentiate x sin x w.r.t. tan x.
Differentiate `sin^-1((2x)/(1 + x^2))w.r.t. cos^-1((1 - x^2)/(1 + x^2))`
Differentiate `tan^-1((x)/(sqrt(1 - x^2))) w.r.t. sec^-1((1)/(2x^2 - 1))`.
Differentiate `cos^-1((1 - x^2)/(1 + x^2)) w.r.t. tan^-1 x.`
Differentiate xx w.r.t. xsix.
Find `(d^2y)/(dx^2)` of the following : x = a cos θ, y = b sin θ at θ = `π/4`.
If y = x + tan x, show that `cos^2x.(d^2y)/(dx^2) - 2y + 2x` = 0.
Find the nth derivative of the following : cos x
Find the nth derivative of the following : sin (ax + b)
Choose the correct option from the given alternatives :
Let `f(1) = 3, f'(1) = -(1)/(3), g(1) = -4 and g'(1) =-(8)/(3).` The derivative of `sqrt([f(x)]^2 + [g(x)]^2` w.r.t. x at x = 1 is
Choose the correct option from the given alternatives :
If f(x) = `sin^-1((4^(x + 1/2))/(1 + 2^(4x)))`, which of the following is not the derivative of f(x)?
Differentiate the following w.r.t. x : `tan^-1[sqrt((sqrt(1 + x^2) + x)/(sqrt(1 + x^2) - x))]`
If `sqrt(y + x) + sqrt(y - x)` = c, show that `"dy"/"dx" = y/x - sqrt(y^2/x^2 - 1)`.
If `xsqrt(1 - y^2) + ysqrt(1 - x^2)` = 1, then show that `"dy"/"dx" = -sqrt((1 - y^2)/(1 - x^2)`.
If x= a cos θ, y = b sin θ, show that `a^2[y(d^2y)/(dx^2) + (dy/dx)^2] + b^2` = 0.
If y = Aemx + Benx, show that y2 – (m + n)y1 + mny = 0.
Choose the correct alternative.
If x = `("e"^"t" + "e"^-"t")/2, "y" = ("e"^"t" - "e"^-"t")/2` then `"dy"/"dx"` = ?
If y = `("x" + sqrt("x"^2 - 1))^"m"`, then `("x"^2 - 1) "dy"/"dx"` = ______.
State whether the following is True or False:
The derivative of `"x"^"m"*"y"^"n" = ("x + y")^("m + n")` is `"x"/"y"`
Find `"dy"/"dx"` if x = `"e"^"3t", "y" = "e"^(sqrt"t")`.
`(dy)/(dx)` of `2x + 3y = sin x` is:-
Let y = y(x) be a function of x satisfying `ysqrt(1 - x^2) = k - xsqrt(1 - y^2)` where k is a constant and `y(1/2) = -1/4`. Then `(dy)/(dx)` at x = `1/2`, is equal to ______.
Find `dy / dx` if, x = `e^(3t), y = e^sqrt t`
If log(x + y) = log(xy) + a then show that, `dy/dx = (-y^2)/x^2`
If log(x + y) = log(xy) + a then show that, `dy/dx = (-y^2)/x^2`
If log(x + y) = log(xy) + a then show that, `dy/dx = (-y^2)/x^2`