Advertisements
Advertisements
प्रश्न
If \[f\left( x \right) = x^3 + 7 x^2 + 8x - 9\]
, find f'(4).
उत्तर
Given:
Clearly, being a polynomial function, is differentiable everywhere. Therefore the derivative of
\[ \Rightarrow f'(x) = \lim_{h \to 0} \frac{(x + h )^3 + 7(x + h )^2 + 8(x + h) - 9 - x^3 - 7 x^2 - 8x + 9}{h}\]
\[ \Rightarrow f'(x) = \lim_{h \to 0} \frac{x^3 + h^3 + 3 x^2 h + 3x h^2 + 7 x^2 + 7 h^2 + 14xh + 8x + 8h - 9 - x^3 - 7 x^2 - 8x + 9}{h}\]
\[ \Rightarrow f'(x) = \lim_{h \to 0} \frac{h^3 + 3 x^2 h + 3x h^2 + 7 h^2 + 14xh + 8h}{h}\]
\[ \Rightarrow f'(x) = \lim_{h \to 0} \frac{h( h^2 + 3 x^2 + 3xh + 7h + 14x + 8)}{h}\]
\[ \Rightarrow f'(x) = \lim_{h \to 0} h^2 + 3 x^2 + 3xh + 7h + 14x + 8\]
\[ \Rightarrow f'(x) = 3 x^2 + 14x + 8\]
Thus,
\[f'(4) = 3 \times 4^2 + 14 \times 4 + 8 \]
\[ = 48 + 56 + 8\]
\[ = 112\]
APPEARS IN
संबंधित प्रश्न
Find `dy/dx` in the following:
xy + y2 = tan x + y
If f (x) = |x − 2| write whether f' (2) exists or not.
Write the derivative of f (x) = |x|3 at x = 0.
Find `dy/dx if x^3 + y^2 + xy = 7`
Find `"dy"/"dx"` ; if y = cos-1 `("2x" sqrt (1 - "x"^2))`
Differentiate e4x + 5 w.r..t.e3x
Find `(dy)/(dx) , "If" x^3 + y^2 + xy = 10`
If y = `sqrt(cosx + sqrt(cosx + sqrt(cosx + ... ∞)`, then show that `"dy"/"dx" = sinx/(1 - 2y)`.
Find `"dy"/"dx"` if x = a cot θ, y = b cosec θ
Find `"dy"/"dx"`, if : x = sinθ, y = tanθ
Find `"dy"/"dx"` if : x = cosec2θ, y = cot3θ at θ= `pi/(6)`
Differentiate `cos^-1((1 - x^2)/(1 + x^2)) w.r.t. tan^-1 x.`
Differentiate `tan^-1((cosx)/(1 + sinx)) w.r.t. sec^-1 x.`
If x = at2 and y = 2at, then show that `xy(d^2y)/(dx^2) + a` = 0.
If y = `e^(mtan^-1x)`, show that `(1 + x^2)(d^2y)/(dx^2) + (2x - m)"dy"/"dx"` = 0.
Find the nth derivative of the following : cos x
Choose the correct option from the given alternatives :
If f(x) = `sin^-1((4^(x + 1/2))/(1 + 2^(4x)))`, which of the following is not the derivative of f(x)?
Suppose that the functions f and g and their derivatives with respect to x have the following values at x = 0 and x = 1:
x | f(x) | g(x) | f')x) | g'(x) |
0 | 1 | 5 | `(1)/(3)` | |
1 | 3 | – 4 | `-(1)/(3)` | `-(8)/(3)` |
(i) The derivative of f[g(x)] w.r.t. x at x = 0 is ......
(ii) The derivative of g[f(x)] w.r.t. x at x = 0 is ......
(iii) The value of `["d"/"dx"[x^(10) + f(x)]^(-2)]_(x = 1_` is ........
(iv) The derivative of f[(x + g(x))] w.r.t. x at x = 0 is ...
Differentiate the following w.r.t. x : `tan^-1[sqrt((sqrt(1 + x^2) + x)/(sqrt(1 + x^2) - x))]`
If `sqrt(y + x) + sqrt(y - x)` = c, show that `"dy"/"dx" = y/x - sqrt(y^2/x^2 - 1)`.
If x sin (a + y) + sin a . cos (a + y) = 0, then show that `"dy"/"dx" = (sin^2(a + y))/(sina)`.
If `x = e^(x/y)`, then show that `"dy"/"dx" = (x - y)/(xlogx)`
Differentiate log `[(sqrt(1 + x^2) + x)/(sqrt(1 + x^2 - x)]]` w.r.t. cos (log x).
Find `"dy"/"dx"` if, `"x"^"y" = "e"^("x - y")`
If log (x + y) = log (xy) + a then show that, `"dy"/"dx" = (- "y"^2)/"x"^2`.
Solve the following:
If `"e"^"x" + "e"^"y" = "e"^((x + y))` then show that, `"dy"/"dx" = - "e"^"y - x"`.
If y = `("x" + sqrt("x"^2 - 1))^"m"`, then `("x"^2 - 1) "dy"/"dx"` = ______.
Find `"dy"/"dx"` if x = `"e"^"3t", "y" = "e"^(sqrt"t")`.
If y = `sqrt(tansqrt(x)`, find `("d"y)/("d"x)`.
If `sqrt(x) + sqrt(y) = sqrt("a")`, then `("d"y)/("d"x)` is ______
Find `(dy)/(dx)`, if `y = sin^-1 ((2x)/(1 + x^2))`
Find `dy/dx if, x= e^(3t), y = e^sqrtt`
Find `dy/dx` if , x = `e^(3t), y = e^(sqrtt)`
If log(x + y) = log(xy) + a then show that, `dy/dx = (-y^2)/x^2`
Find `dy/dx if , x = e^(3t) , y = e^sqrtt`
If y = `(x + sqrt(x^2 - 1))^m`, show that `(x^2 - 1)(d^2y)/(dx^2) + xdy/dx` = m2y
Find `dy/dx` if, `x = e^(3t), y = e^(sqrtt)`
If log(x + y) = log(xy) + a then show that, `dy/dx = (-y^2)/x^2`