Advertisements
Advertisements
प्रश्न
If for the function
\[\Phi \left( x \right) = \lambda x^2 + 7x - 4, \Phi'\left( 5 \right) = 97, \text { find } \lambda .\]
उत्तर
Given:
Clearly, being a polynomial function, is differentiable everywhere. Therefore the derivative of
\[\phi'(x) = \lim_{h \to 0} \frac{\phi(x + h) - \phi(x)}{h}\]
\[ \Rightarrow \phi'(x) = \lim_{h \to 0} \frac{\ \lambda (x + h )^2 + 7(x + h) - 4 - \lambda x^2 - 7x + 4}{h}\]
\[ \Rightarrow \phi'(x) = \lim_{h \to 0} \frac{\ \lambda x^2 + \lambda h^2 + 2\lambda xh + 7x + 7h - 4 -\lambda x^2 - 7x + 4}{h}\]
\[ \Rightarrow \phi'(x) = \lim_{h \to 0} \frac{\lambda h^2 + 2\lambda xh + 7h}{h}\]
\[ \Rightarrow \phi'(x) = \lim_{h \to 0} \frac{h(\lambda h + 2\lambda x + 7)}{h}\]
\[ \Rightarrow \phi'(x) = 2\lambda x + 7\]
It is given
Thus,
\[\phi'(5) = 10\lambda + 7 = 97\]
\[ \Rightarrow 10\lambda + 7 = 97\]
\[ \Rightarrow 10\lambda = 90\]
\[ \Rightarrow\lambda = 9\]
APPEARS IN
संबंधित प्रश्न
If y=eax ,show that `xdy/dx=ylogy`
Find `dy/dx` in the following:
2x + 3y = sin x
Find `dy/dx` in the following:
2x + 3y = sin y
Find `dy/dx` in the following:
sin2 x + cos2 y = 1
Find `dy/dx` in the following:
`y = sin^(-1)((2x)/(1+x^2))`
if `(x^2 + y^2)^2 = xy` find `(dy)/(dx)`
Is |sin x| differentiable? What about cos |x|?
Write the derivative of f (x) = |x|3 at x = 0.
Differentiate e4x + 5 w.r..t.e3x
Find `(dy)/(dx) if y = cos^-1 (√x)`
Find `(dy)/(dx)` if `y = sin^-1(sqrt(1-x^2))`
Differentiate `tan^-1((x)/(sqrt(1 - x^2))) w.r.t. sec^-1((1)/(2x^2 - 1))`.
Find `(d^2y)/(dx^2)` of the following : x = a(θ – sin θ), y = a(1 – cos θ)
Find `(d^2y)/(dx^2)` of the following : x = a cos θ, y = b sin θ at θ = `π/4`.
If x = cos t, y = emt, show that `(1 - x^2)(d^2y)/(dx^2) - x"dy"/"dx" - m^2y` = 0.
If y = x + tan x, show that `cos^2x.(d^2y)/(dx^2) - 2y + 2x` = 0.
If 2y = `sqrt(x + 1) + sqrt(x - 1)`, show that 4(x2 – 1)y2 + 4xy1 – y = 0.
Find the nth derivative of the following : apx+q
Find the nth derivative of the following : cos x
Choose the correct option from the given alternatives :
If f(x) = `sin^-1((4^(x + 1/2))/(1 + 2^(4x)))`, which of the following is not the derivative of f(x)?
If y `tan^-1(sqrt((a - x)/(a + x)))`, where – a < x < a, then `"dy"/"dx"` = .........
Differentiate the following w.r.t. x : `sin^2[cot^-1(sqrt((1 + x)/(1 - x)))]`
Differentiate `tan^-1((sqrt(1 + x^2) - 1)/x)` w.r.t. `cos^-1(sqrt((1 + sqrt(1 + x^2))/(2sqrt(1 + x^2))))`
Find `"dy"/"dx" if, sqrt"x" + sqrt"y" = sqrt"a"`
Find `"dy"/"dx"` if, xy = log (xy)
Solve the following:
If `"x"^5 * "y"^7 = ("x + y")^12` then show that, `"dy"/"dx" = "y"/"x"`
Choose the correct alternative.
If x = `("e"^"t" + "e"^-"t")/2, "y" = ("e"^"t" - "e"^-"t")/2` then `"dy"/"dx"` = ?
If x2 + y2 = 1, then `(d^2x)/(dy^2)` = ______.
If x = sin θ, y = tan θ, then find `("d"y)/("d"x)`.
Differentiate w.r.t x (over no. 24 and 25) `e^x/sin x`
Find `(dy)/(dx)` if x + sin(x + y) = y – cos(x – y)
Find `dy/dx if, x= e^(3t), y = e^sqrtt`
Find `dy/dx` if , x = `e^(3t), y = e^(sqrtt)`
If log(x + y) = log(xy) + a then show that, `dy/dx = (-y^2)/x^2`
Find `dy/dx` if, x = `e^(3t)`, y = `e^sqrtt`
Find `dy/dx` if, `x = e^(3t), y = e^(sqrtt)`
If log(x + y) = log(xy) + a then show that, `dy/dx = (-y^2)/x^2`