हिंदी

If for the Function φ ( X ) = λ X 2 + 7 X − 4 , φ ′ ( 5 ) = 97 , F I N D λ . - Mathematics

Advertisements
Advertisements

प्रश्न

If for the function 

\[\Phi \left( x \right) = \lambda x^2 + 7x - 4, \Phi'\left( 5 \right) = 97, \text { find } \lambda .\]

संक्षेप में उत्तर

उत्तर

Given:  

\[\phi(x) = \lambda x^2 + 7x - 4\]

Clearly, being a polynomial function, is differentiable everywhere. Therefore the derivative of 

\[\phi(x) = \lambda x^2 + 7x - 4\]
\[x\] is given by:

\[\phi'(x) = \lim_{h \to 0} \frac{\phi(x + h) - \phi(x)}{h}\]

\[ \Rightarrow \phi'(x) = \lim_{h \to 0} \frac{\ \lambda (x + h )^2 + 7(x + h) - 4 - \lambda x^2 - 7x + 4}{h}\]

\[ \Rightarrow \phi'(x) = \lim_{h \to 0} \frac{\ \lambda  x^2 + \lambda  h^2 + 2\lambda xh + 7x + 7h - 4 -\lambda x^2 - 7x + 4}{h}\]

\[ \Rightarrow \phi'(x) = \lim_{h \to 0} \frac{\lambda h^2 + 2\lambda xh + 7h}{h}\]

\[ \Rightarrow \phi'(x) = \lim_{h \to 0} \frac{h(\lambda h + 2\lambda x + 7)}{h}\]

\[ \Rightarrow \phi'(x) = 2\lambda x + 7\]

It is given 

\[\phi'(5) = 97\]

Thus,

\[\phi'(5) = 10\lambda + 7 = 97\]

\[ \Rightarrow 10\lambda  + 7 = 97\]

\[ \Rightarrow 10\lambda  = 90\]

\[ \Rightarrow\lambda  = 9\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 10: Differentiability - Exercise 10.2 [पृष्ठ १६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 10 Differentiability
Exercise 10.2 | Q 4 | पृष्ठ १६

संबंधित प्रश्न

Find `dy/dx` in the following:

xy + y2 = tan x + y


Find `dy/dx` in the following.

x3 + x2y + xy2 + y3 = 81


Find `dy/dx` in the following:

sin2 x + cos2 y = 1


Show that the derivative of the function f given by 

\[f\left( x \right) = 2 x^3 - 9 x^2 + 12x + 9\], at x = 1 and x = 2 are equal.

If f (x) = |x − 2| write whether f' (2) exists or not.


If  \[\lim_{x \to c} \frac{f\left( x \right) - f\left( c \right)}{x - c}\]  exists finitely, write the value of  \[\lim_{x \to c} f\left( x \right)\]


Find `"dy"/"dx"` ; if x = sin3θ , y = cos3θ


Find `"dy"/"dx"` ; if y = cos-1 `("2x" sqrt (1 - "x"^2))`


Differentiate e4x + 5 w.r..t.e3x


If x = tan-1t and y = t3 , find `(dy)/(dx)`.


If ex + ey = ex+y, then show that `"dy"/"dx" = -e^(y - x)`.


If x = `(t + 1)/(t - 1), y = (t - 1)/(t + 1), "then show that"  y^2 + "dy"/"dx"` = 0.


DIfferentiate x sin x w.r.t. tan x.


Find `(d^2y)/(dx^2)` of the following : x = sinθ, y = sin3θ at θ = `pi/(2)`


If y = eax.sin(bx), show that y2 – 2ay1 + (a2 + b2)y = 0.


If `sec^-1((7x^3 - 5y^3)/(7^3 + 5y^3)) = "m", "show"  (d^2y)/(dx^2)` = 0.


If x = a sin t – b cos t, y = a cos t + b sin t, show that `(d^2y)/(dx^2) = -(x^2 + y^2)/(y^3)`.


Find the nth derivative of the following : (ax + b)m 


Find the nth derivative of the following:

`(1)/x`


Find the nth derivative of the following : sin (ax + b)


Choose the correct option from the given alternatives :

If y = sin (2sin–1 x), then dx = ........


Suppose that the functions f and g and their derivatives with respect to x have the following values at x = 0 and x = 1: 

x f(x) g(x) f')x) g'(x)
0 1   5 `(1)/(3)`
1 3 – 4 `-(1)/(3)` `-(8)/(3)`

(i) The derivative of f[g(x)] w.r.t. x at x = 0 is ......
(ii) The derivative of g[f(x)] w.r.t. x at x = 0 is ......
(iii) The value of `["d"/"dx"[x^(10) + f(x)]^(-2)]_(x = 1_` is ........
(iv) The derivative of f[(x + g(x))] w.r.t. x at x = 0 is ...


Differentiate the following w.r.t. x : `tan^-1((sqrt(x)(3 - x))/(1 - 3x))`


Differentiate the following w.r.t. x : `cos^-1((sqrt(1 + x) - sqrt(1 - x))/2)`


If `sqrt(y + x) + sqrt(y - x)` = c, show that `"dy"/"dx" = y/x - sqrt(y^2/x^2 - 1)`.


If x sin (a + y) + sin a . cos (a + y) = 0, then show that `"dy"/"dx" = (sin^2(a + y))/(sina)`.


If log y = log (sin x) – x2, show that `(d^2y)/(dx^2) + 4x "dy"/"dx" + (4x^2 + 3)y` = 0.


Find `"dy"/"dx" if, sqrt"x" + sqrt"y" = sqrt"a"`


Find `"dy"/"dx"` if, `"x"^"y" = "e"^("x - y")`


If y = `("x" + sqrt("x"^2 - 1))^"m"`, then `("x"^2 - 1) "dy"/"dx"` = ______.


If x2 + y2 = t + `1/"t"` and x4 + y4 = t2 + `1/"t"^2` then `("d"y)/("d"x)` = ______


If x = a t4 y = 2a t2 then `("d"y)/("d"x)` = ______


If 2x + 2y = 2x+y, then `(dy)/(dx)` is equal to ______.


Find `dy/dx if, x= e^(3t), y = e^sqrtt`


If y = `(x + sqrt(x^2 - 1))^m`, show that `(x^2 - 1)(d^2y)/(dx^2) + xdy/dx` = m2y


Find `dy / dx` if, x = `e^(3t), y = e^sqrt t` 


Solve the following.

If log(x + y) = log(xy) + a then show that, `dy/dx = (-y^2)/x^2`


Find `dy/dx"if", x= e^(3t), y=e^sqrtt`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×