हिंदी

Show that the Derivative of the Function F Given by F ( X ) = 2 X 3 − 9 X 2 + 12 X + 9 , at X = 1 and X = 2 Are Equal. - Mathematics

Advertisements
Advertisements

प्रश्न

Show that the derivative of the function f given by 

\[f\left( x \right) = 2 x^3 - 9 x^2 + 12x + 9\], at x = 1 and x = 2 are equal.
संक्षेप में उत्तर

उत्तर

Given: 

\[f(x) = 2 x^3 - 9 x^2 + 12x + 9\]

Clearly, being a polynomial function, is differentiable everywhere. Therefore the derivative of 

\[f\] at 
\[x\]  is given by:
`f'(x) = lim_(h→0)f(x +h -f(x))/h`
\[ \Rightarrow f'(x) = \lim_{h \to 0} \frac{2(x + h )^3 - 9(x + h )^2 + 12(x + h) + 9 - 2 x^3 + 9 x^2 - 12x - 9}{h}\]
\[ \Rightarrow f'(x) = \lim_{h \to 0} \frac{2 x^3 + 2 h^3 + 6 x^2 h + 6x h^2 - 9 x^2 - 9 h^2 - 18xh + 12x + 12h + 9 - 2 x^3 + 9 x^2 - 12x - 9}{h}\]
\[ \Rightarrow f'(x) = \lim_{h \to 0} \frac{2 h^3 + 6 x^2 h + 6x h^2 - 9 h^2 - 18xh + 12h}{h}\]
\[ \Rightarrow f'(x) = \lim_{h \to 0} \frac{h( h^2 + 6 x^2 + 6xh - 9h - 18x + 12)}{h}\]
\[ \Rightarrow f'(x) = 6 x^2 - 18x + 12\]

So,

\[f'(1) = 6\left( x^2 - 3x + 2 \right) \]
\[ = 6 \times (1 - 3 + 2) \]
\[ = 0\]
\[f'(2) = 6\left( x^2 - 3x + 2 \right) \]
\[ = 6 \times (4 - 6 + 2) \]
\[ = 0\]

Hence the derivative at 

\[x = 1\] and 
  \[x = 2\]  are equal.
shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 10: Differentiability - Exercise 10.2 [पृष्ठ १६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 10 Differentiability
Exercise 10.2 | Q 3 | पृष्ठ १६

संबंधित प्रश्न

If y=eax ,show that  `xdy/dx=ylogy`


Find the derivative of the function f defined by f (x) = mx + c at x = 0.


Write the derivative of f (x) = |x|3 at x = 0.


Find `"dy"/"dx"` ; if y = cos-1 `("2x" sqrt (1 - "x"^2))`


Find `(dy)/(dx) , "If"   x^3 + y^2 + xy = 10`


Discuss extreme values of the function f(x) = x.logx


If ex + ey = ex+y, then show that `"dy"/"dx" = -e^(y - x)`.


Find `"dy"/"dx"` if x = a cot θ, y = b cosec θ


Find `"dy"/"dx"`, if : `x = cos^-1((2t)/(1 + t^2)), y = sec^-1(sqrt(1 + t^2))`


Find `"dy"/"dx"` if : x = a cos3θ, y = a sin3θ at θ = `pi/(3)`


Find `"dy"/"dx"` if : x = t2 + t + 1, y = `sin((pit)/2) + cos((pit)/2) "at"  t = 1`


If x = `(t + 1)/(t - 1), y = (t - 1)/(t + 1), "then show that"  y^2 + "dy"/"dx"` = 0.


If y = `e^(mtan^-1x)`, show that `(1 + x^2)(d^2y)/(dx^2) + (2x - m)"dy"/"dx"` = 0.


If y = x + tan x, show that `cos^2x.(d^2y)/(dx^2) - 2y + 2x` = 0.


If y = sin (m cos–1x), then show that `(1 - x^2)(d^2y)/(dx^2) - x"dy"/"dx" + m^2y` = 0.


If x2 + 6xy + y2 = 10, show that `(d^2y)/(dx^2) = (80)/(3x + y)^3`.


Find the nth derivative of the following : cos x


Choose the correct option from the given alternatives :

If y = `a cos (logx) and "A"(d^2y)/(dx^2) + "B""dy"/"dx" + "C"` = 0, then the values of A, B, C are


If `xsqrt(1 - y^2) + ysqrt(1 - x^2)` = 1, then show that `"dy"/"dx" = -sqrt((1 - y^2)/(1 - x^2)`.


If `x = e^(x/y)`, then show that `"dy"/"dx" = (x - y)/(xlogx)`


DIfferentiate `tan^-1((sqrt(1 + x^2) - 1)/x) w.r.t. tan^-1(sqrt((2xsqrt(1 - x^2))/(1 - 2x^2)))`.


Differentiate log `[(sqrt(1 + x^2) + x)/(sqrt(1 + x^2 - x)]]` w.r.t. cos (log x).


If log y = log (sin x) – x2, show that `(d^2y)/(dx^2) + 4x "dy"/"dx" + (4x^2 + 3)y` = 0.


Find `"dy"/"dx"` if, yex + xey = 1 


Find `"dy"/"dx"` if, `"x"^"y" = "e"^("x - y")`


Choose the correct alternative.

If ax2 + 2hxy + by2 = 0 then `"dy"/"dx" = ?` 


If x2 + y2 = t + `1/"t"` and x4 + y4 = t2 + `1/"t"^2` then `("d"y)/("d"x)` = ______


If y = `e^(m tan^-1x)` then show that `(1 + x^2) (d^2y)/(dx^2) + (2x - m) (dy)/(dx)` = 0


Let y = y(x) be a function of x satisfying `ysqrt(1 - x^2) = k - xsqrt(1 - y^2)` where k is a constant and `y(1/2) = -1/4`. Then `(dy)/(dx)` at x = `1/2`, is equal to ______.


`"If" log(x+y) = log(xy)+a  "then show that", dy/dx=(-y^2)/x^2`


If log(x + y) = log(xy) + a then show that, `dy/dx = (-y^2)/x^2`


If log(x + y) = log(xy) + a then show that, `dy/dx = (-y^2)/x^2`


Find `dy/dx` if, x = e3t, y = `e^sqrtt`


Find `dy/dx` if, `x = e^(3t), y = e^(sqrtt)`


If log(x + y) = log(xy) + a then show that, `dy/dx = (−y^2)/x^2`


If log(x + y) = log(xy) + a then show that, `dy/dx = (-y^2)/x^2`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×