English

Show that the Derivative of the Function F Given by F ( X ) = 2 X 3 − 9 X 2 + 12 X + 9 , at X = 1 and X = 2 Are Equal. - Mathematics

Advertisements
Advertisements

Question

Show that the derivative of the function f given by 

\[f\left( x \right) = 2 x^3 - 9 x^2 + 12x + 9\], at x = 1 and x = 2 are equal.
Answer in Brief

Solution

Given: 

\[f(x) = 2 x^3 - 9 x^2 + 12x + 9\]

Clearly, being a polynomial function, is differentiable everywhere. Therefore the derivative of 

\[f\] at 
\[x\]  is given by:
`f'(x) = lim_(h→0)f(x +h -f(x))/h`
\[ \Rightarrow f'(x) = \lim_{h \to 0} \frac{2(x + h )^3 - 9(x + h )^2 + 12(x + h) + 9 - 2 x^3 + 9 x^2 - 12x - 9}{h}\]
\[ \Rightarrow f'(x) = \lim_{h \to 0} \frac{2 x^3 + 2 h^3 + 6 x^2 h + 6x h^2 - 9 x^2 - 9 h^2 - 18xh + 12x + 12h + 9 - 2 x^3 + 9 x^2 - 12x - 9}{h}\]
\[ \Rightarrow f'(x) = \lim_{h \to 0} \frac{2 h^3 + 6 x^2 h + 6x h^2 - 9 h^2 - 18xh + 12h}{h}\]
\[ \Rightarrow f'(x) = \lim_{h \to 0} \frac{h( h^2 + 6 x^2 + 6xh - 9h - 18x + 12)}{h}\]
\[ \Rightarrow f'(x) = 6 x^2 - 18x + 12\]

So,

\[f'(1) = 6\left( x^2 - 3x + 2 \right) \]
\[ = 6 \times (1 - 3 + 2) \]
\[ = 0\]
\[f'(2) = 6\left( x^2 - 3x + 2 \right) \]
\[ = 6 \times (4 - 6 + 2) \]
\[ = 0\]

Hence the derivative at 

\[x = 1\] and 
  \[x = 2\]  are equal.
shaalaa.com
  Is there an error in this question or solution?
Chapter 10: Differentiability - Exercise 10.2 [Page 16]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 10 Differentiability
Exercise 10.2 | Q 3 | Page 16

RELATED QUESTIONS

Find `dy/dx` in the following:

ax + by2 = cos y


If  \[f\left( x \right) = x^3 + 7 x^2 + 8x - 9\] 

, find f'(4).


Discuss extreme values of the function f(x) = x.logx


Find `"dy"/"dx"`, if : x = `(t + 1/t)^a, y = a^(t+1/t)`, where a > 0, a ≠ 1, t ≠ 0.


Find `"dy"/"dx"` if : x = cosec2θ, y = cot3θ at θ= `pi/(6)`


Find `dy/dx` if : x = 2 cos t + cos 2t, y = 2 sin t – sin 2t at t = `pi/(4)`


Find `"dy"/"dx"` if : x = t + 2sin (πt), y = 3t – cos (πt) at t = `(1)/(2)`


If x = `(t + 1)/(t - 1), y = (t - 1)/(t + 1), "then show that"  y^2 + "dy"/"dx"` = 0.


Differentiate `tan^-1((cosx)/(1 + sinx)) w.r.t. sec^-1 x.`


Differentiate `tan^-1((sqrt(1 + x^2) - 1)/(x)) w.r.t  tan^-1((2xsqrt(1 - x^2))/(1 - 2x^2))`.


Find `(d^2y)/(dx^2)` of the following : x = sinθ, y = sin3θ at θ = `pi/(2)`


Find the nth derivative of the following : cos (3 – 2x)


Find the nth derivative of the following : `(1)/(3x - 5)`


Choose the correct option from the given alternatives :

If y = sin (2sin–1 x), then dx = ........


Choose the correct option from the given alternatives :

If `xsqrt(y + 1) + ysqrt(x + 1) = 0 and x ≠ y, "then" "dy"/"dx"` = ........


Choose the correct option from the given alternatives :

If y = `a cos (logx) and "A"(d^2y)/(dx^2) + "B""dy"/"dx" + "C"` = 0, then the values of A, B, C are


Solve the following : 

f(x) = –x, for – 2 ≤ x < 0
= 2x, for 0 ≤ x < 2
= `(18 - x)/(4)`, for 2 < x ≤ 7
g(x) = 6 – 3x, for 0 ≤ x < 2
= `(2x - 4)/(3)`, for 2 < x ≤ 7
Let u (x) = f[g(x)], v(x) = g[f(x)] and w(x) = g[g(x)]. Find each derivative at x = 1, if it exists i.e. find u'(1), v' (1) and w'(1). If it doesn't exist, then explain why?


Suppose that the functions f and g and their derivatives with respect to x have the following values at x = 0 and x = 1: 

x f(x) g(x) f')x) g'(x)
0 1   5 `(1)/(3)`
1 3 – 4 `-(1)/(3)` `-(8)/(3)`

(i) The derivative of f[g(x)] w.r.t. x at x = 0 is ......
(ii) The derivative of g[f(x)] w.r.t. x at x = 0 is ......
(iii) The value of `["d"/"dx"[x^(10) + f(x)]^(-2)]_(x = 1_` is ........
(iv) The derivative of f[(x + g(x))] w.r.t. x at x = 0 is ...


Differentiate the following w.r.t. x : `tan^-1[sqrt((sqrt(1 + x^2) + x)/(sqrt(1 + x^2) - x))]`


If `sqrt(y + x) + sqrt(y - x)` = c, show that `"dy"/"dx" = y/x - sqrt(y^2/x^2 - 1)`.


If sin y = x sin (a + y), then show that `"dy"/"dx" = (sin^2(a + y))/(sina)`.


DIfferentiate `tan^-1((sqrt(1 + x^2) - 1)/x) w.r.t. tan^-1(sqrt((2xsqrt(1 - x^2))/(1 - 2x^2)))`.


If y2 = a2cos2x + b2sin2x, show that `y + (d^2y)/(dx^2) = (a^2b^2)/y^3`


Find `"dy"/"dx"` if, x3 + x2y + xy2 + y3 = 81


Find `"dy"/"dx"` if, `"x"^"y" = "e"^("x - y")`


Find `"dy"/"dx"` if, xy = log (xy)


If log (x + y) = log (xy) + a then show that, `"dy"/"dx" = (- "y"^2)/"x"^2`.


Solve the following:

If `"e"^"x" + "e"^"y" = "e"^((x + y))` then show that, `"dy"/"dx" = - "e"^"y - x"`.


Differentiate w.r.t x (over no. 24 and 25) `e^x/sin x`


If `tan ((x + y)/(x - y))` = k, then `dy/dx` is equal to ______.


Find `dy/dx if, x= e^(3t), y = e^sqrtt`


`"If" log(x+y) = log(xy)+a  "then show that", dy/dx=(-y^2)/x^2`


Find `dy/dx` if, x = e3t, y = `e^sqrtt`


If log(x + y) = log(xy) + a then show that, `dy/dx = (-y^2)/x^2`


Find `dy/(dx)  "if" , x = e^(3t), y = e^sqrtt`. 


If log(x + y) = log(xy) + a then show that, `dy/dx = (-y^2)/x^2`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×