English

If x = then show thatdydxt+1t-1,y=t-1t+1,then show that y2+dydx = 0. - Mathematics and Statistics

Advertisements
Advertisements

Question

If x = `(t + 1)/(t - 1), y = (t - 1)/(t + 1), "then show that"  y^2 + "dy"/"dx"` = 0.

Sum

Solution

x = `("t" + 1)/("t" - 1)` .......(1)

y = `("t" - 1)/("t" + 1)` ......(2)

Multiplying equations (1) and (2)

x × y = `(("t" + 1))/(("t" - 1)) xx (("t" - 1))/(("t" + 1))`

x × y = 1

x = `1/"y"` ....(3)

Differentiating w.r.t. x,

`"x" xx "dy"/"dx" + "y" xx (1) = 0`

`1/"y" xx "dy"/"dx" + "y"/1 = 0` ....[From (3)]

`(1 xx "dy"/"dx" + "y"^2)/"y" = 0`

`"dy"/"dx" + "y"^2 = 0`

∴ `"y"^2 + "dy"/"dx" = 0`

Hence proved.

shaalaa.com
  Is there an error in this question or solution?
Chapter 1: Differentiation - Exercise 1.4 [Page 48]

RELATED QUESTIONS

Find `dy/dx` in the following:

ax + by2 = cos y


Find `dy/dx` in the following:

xy + y2 = tan x + y


Find `dy/dx` in the following:

`y = sin^(-1)((2x)/(1+x^2))`


Show that the derivative of the function f given by 

\[f\left( x \right) = 2 x^3 - 9 x^2 + 12x + 9\], at x = 1 and x = 2 are equal.

If  \[f\left( x \right) = x^3 + 7 x^2 + 8x - 9\] 

, find f'(4).


Is |sin x| differentiable? What about cos |x|?


If f (x) = |x − 2| write whether f' (2) exists or not.


Write the derivative of f (x) = |x|3 at x = 0.


Write the value of the derivative of f (x) = |x − 1| + |x − 3| at x = 2.


Find `"dy"/"dx"` ; if x = sin3θ , y = cos3θ


Find `"dy"/"dx"` ; if y = cos-1 `("2x" sqrt (1 - "x"^2))`


Find `(dy)/(dx) if y = cos^-1 (√x)`


Differentiate tan-1 (cot 2x) w.r.t.x.


Find `"dy"/"dx"`, if : x = sinθ, y = tanθ


Find `"dy"/"dx"`, if : x = `(t + 1/t)^a, y = a^(t+1/t)`, where a > 0, a ≠ 1, t ≠ 0.


Find `"dy"/"dx"` if : x = cosec2θ, y = cot3θ at θ= `pi/(6)`


Find `dy/dx` if : x = 2 cos t + cos 2t, y = 2 sin t – sin 2t at t = `pi/(4)`


Find `"dy"/"dx"` if : x = t + 2sin (πt), y = 3t – cos (πt) at t = `(1)/(2)`


Differentiate `cos^-1((1 - x^2)/(1 + x^2)) w.r.t. tan^-1 x.`


Find `(d^2y)/(dx^2)` of the following : x = sinθ, y = sin3θ at θ = `pi/(2)`


If x = at2 and y = 2at, then show that `xy(d^2y)/(dx^2) + a` = 0.


If y = `e^(mtan^-1x)`, show that `(1 + x^2)(d^2y)/(dx^2) + (2x - m)"dy"/"dx"` = 0.


If x = cos t, y = emt, show that `(1 - x^2)(d^2y)/(dx^2) - x"dy"/"dx" - m^2y` = 0.


If y = x + tan x, show that `cos^2x.(d^2y)/(dx^2) - 2y + 2x` = 0.


If y = sin (m cos–1x), then show that `(1 - x^2)(d^2y)/(dx^2) - x"dy"/"dx" + m^2y` = 0.


If x2 + 6xy + y2 = 10, show that `(d^2y)/(dx^2) = (80)/(3x + y)^3`.


Find the nth derivative of the following:

`(1)/x`


Find the nth derivative of the following : apx+q 


Find the nth derivative of the following : cos (3 – 2x)


Find the nth derivative of the following:

y = e8x . cos (6x + 7)


Solve the following : 

f(x) = –x, for – 2 ≤ x < 0
= 2x, for 0 ≤ x < 2
= `(18 - x)/(4)`, for 2 < x ≤ 7
g(x) = 6 – 3x, for 0 ≤ x < 2
= `(2x - 4)/(3)`, for 2 < x ≤ 7
Let u (x) = f[g(x)], v(x) = g[f(x)] and w(x) = g[g(x)]. Find each derivative at x = 1, if it exists i.e. find u'(1), v' (1) and w'(1). If it doesn't exist, then explain why?


Suppose that the functions f and g and their derivatives with respect to x have the following values at x = 0 and x = 1: 

x f(x) g(x) f')x) g'(x)
0 1   5 `(1)/(3)`
1 3 – 4 `-(1)/(3)` `-(8)/(3)`

(i) The derivative of f[g(x)] w.r.t. x at x = 0 is ......
(ii) The derivative of g[f(x)] w.r.t. x at x = 0 is ......
(iii) The value of `["d"/"dx"[x^(10) + f(x)]^(-2)]_(x = 1_` is ........
(iv) The derivative of f[(x + g(x))] w.r.t. x at x = 0 is ...


Differentiate the following w.r.t. x : `sin^2[cot^-1(sqrt((1 + x)/(1 - x)))]`


Differentiate the following w.r.t. x : `cos^-1((sqrt(1 + x) - sqrt(1 - x))/2)`


If `sqrt(y + x) + sqrt(y - x)` = c, show that `"dy"/"dx" = y/x - sqrt(y^2/x^2 - 1)`.


If `xsqrt(1 - y^2) + ysqrt(1 - x^2)` = 1, then show that `"dy"/"dx" = -sqrt((1 - y^2)/(1 - x^2)`.


If sin y = x sin (a + y), then show that `"dy"/"dx" = (sin^2(a + y))/(sina)`.


If `x = e^(x/y)`, then show that `"dy"/"dx" = (x - y)/(xlogx)`


Differentiate log `[(sqrt(1 + x^2) + x)/(sqrt(1 + x^2 - x)]]` w.r.t. cos (log x).


Differentiate `tan^-1((sqrt(1 + x^2) - 1)/x)` w.r.t. `cos^-1(sqrt((1 + sqrt(1 + x^2))/(2sqrt(1 + x^2))))`


If y2 = a2cos2x + b2sin2x, show that `y + (d^2y)/(dx^2) = (a^2b^2)/y^3`


If x= a cos θ, y = b sin θ, show that `a^2[y(d^2y)/(dx^2) + (dy/dx)^2] + b^2` = 0.


If y = Aemx + Benx, show that y2 – (m + n)y1 + mny = 0.


Find `"dy"/"dx"` if, x3 + x2y + xy2 + y3 = 81


If log (x + y) = log (xy) + a then show that, `"dy"/"dx" = (- "y"^2)/"x"^2`.


Choose the correct alternative.

If y = 5x . x5, then `"dy"/"dx" = ?` 


Choose the correct alternative.

If ax2 + 2hxy + by2 = 0 then `"dy"/"dx" = ?` 


If `"x"^7*"y"^9 = ("x + y")^16`, then show that `"dy"/"dx" = "y"/"x"`


Find `"dy"/"dx"` if x = `"e"^"3t",  "y" = "e"^(sqrt"t")`.


If x2 + y2 = 1, then `(d^2x)/(dy^2)` = ______.


If x2 + y2 = t + `1/"t"` and x4 + y4 = t2 + `1/"t"^2` then `("d"y)/("d"x)` = ______


If x = a t4 y = 2a t2 then `("d"y)/("d"x)` = ______


`(dy)/(dx)` of `xy + y^2 = tan x + y` is


Find `(dy)/(dx)`, if `y = sin^-1 ((2x)/(1 + x^2))`


Differentiate w.r.t x (over no. 24 and 25) `e^x/sin x`


If 2x + 2y = 2x+y, then `(dy)/(dx)` is equal to ______.


Find `dy/dx` if , x = `e^(3t), y = e^(sqrtt)`


Find `dy/dx` if, x = `e^(3t)`, y = `e^sqrtt`


Find `dy/dx if , x = e^(3t) , y = e^sqrtt`


If log (x+y) = log (xy) + a then show that, `dy/dx= (-y^2)/(x^2)`


If y = `(x + sqrt(x^2 - 1))^m`, show that `(x^2 - 1)(d^2y)/(dx^2) + xdy/dx` = m2y


Solve the following.

If log(x + y) = log(xy) + a then show that, `dy/dx = (-y^2)/x^2`


Find `dy/dx` if, `x = e^(3t), y = e^sqrtt`


If log(x + y) = log(xy) + a then show that, `dy/dx = (-y^2)/x^2`


If log(x + y) = log(xy) + a then show that, `dy/dx = (−y^2)/x^2`


Find `dy/dx` if, `x = e^(3t), y = e^(sqrtt)`


If log(x + y) = log(xy) + a, then show that `dy/dx = (-y^2)/x^2`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×