English

If x = a cos3t, y = a sin3t, show that dydxdydx=-(yx)13. - Mathematics and Statistics

Advertisements
Advertisements

Question

If x = a cos3t, y = a sin3t, show that `"dy"/"dx" = -(y/x)^(1/3)`.

Sum

Solution 1

x = a cos3t, y = a sin3t
Differentiating x and y w.r.t. t, we get
`"dx"/"dt" = a"d"/"dt"(cost)^3 = a.3(cost)^2"d"/"dt"(cost)`
= 3acos2t(– sint) = –3a cos2t sint
and
`"dy"/"dt" = a"d"/"dt"(sint)^3`

= `a.3(sin t)^2"d"/"dt"(sin t)`
= 3a sin2t. cos t
∴ `"dy"/"dx" = ((dy/dt))/((dx/"dt")`

= `(3a sin^2tcost)/(-3a cos^2tsint)`

= `-"sint"/"cost"`                       ...(1)
Now, x = a cos3t
∴ cos3t = `x/a`

∴ cos t = `(x/a)^(1/3)`
y = a sin3t
∴ sin3t = `y/a`

∴ cos3t = `(y/a)^(1/3)`

∴ from (1), `"dy"/"dx" = -(y^(1/3)/a^(1/3))/(x^(1/3)/a^(1/3)`

= `-(y/x)^(1/3)`

shaalaa.com

Solution 2

Alternative Method :
x = a cos3t, y = a sin3t
∴ `cos^3t = x/a, sin^3t = y/a`

∴ `cos t = (x/a)^(1/3), sin t = (y/a)^(1/3)`

∴ cos2t + sin2t = 1 gives

`(x/a)^(2/3) + (y/a)^(2/3)` = 1

∴ `x^(2/3) + y^(2/3) =a^(2/3)`
Differentiating both sides w.r.t. t, we get
`(2)/(3)x^((-1)/(3)) + (2)/(3)y^((-1)/(3)),"dy"/"dx"` = 0

∴ `(2)/(3)y^((-1)/(3))"dy"/"dx" = -(2)/(3)x^((-1)/(3)`

∴ `"dy"/"dx" = -(x/y)^(-1/3) = -(y/x)^(1/3)`

shaalaa.com
  Is there an error in this question or solution?
Chapter 1: Differentiation - Exercise 1.4 [Page 48]

RELATED QUESTIONS

 

If `y=log[x+sqrt(x^2+a^2)] ` show that `(x^2+a^2)(d^2y)/(dx^2)+xdy/dx=0`

 

Differentiate the function with respect to x. 

cos x . cos 2x . cos 3x


Differentiate the function with respect to x.

`sqrt(((x-1)(x-2))/((x-3)(x-4)(x-5)))`


Differentiate the function with respect to x.

(x + 3)2 . (x + 4)3 . (x + 5)4


Differentiate the function with respect to x.

xsin x + (sin x)cos x


Find `dy/dx`for the function given in the question:

xy + yx = 1


Find `dy/dx` for the function given in the question:

(cos x)y = (cos y)x


Differentiate (x2 – 5x + 8) (x3 + 7x + 9) in three ways mentioned below:

  1. by using product rule
  2. by expanding the product to obtain a single polynomial.
  3. by logarithmic differentiation.

Do they all give the same answer?


If cos y = x cos (a + y), with cos a ≠ ± 1, prove that `dy/dx = cos^2(a+y)/(sin a)`


If x = a (cos t + t sin t) and y = a (sin t – t cos t), find `(d^2y)/dx^2`


if `x^m y^n = (x + y)^(m + n)`, prove that `(d^2y)/(dx^2)= 0`


If `y = sin^-1 x + cos^-1 x , "find"  dy/dx`


Find `(d^2y)/(dx^2)` , if y = log x


Differentiate : log (1 + x2)  w.r.t. cot-1 x. 


 Solve the following differential equation: (3xy + y2) dx + (x2 + xy) dy = 0 


If `(sin "x")^"y" = "x" + "y", "find" (d"y")/(d"x")`


If log (x + y) = log(xy) + p, where p is a constant, then prove that `"dy"/"dx" = (-y^2)/(x^2)`.


If xy = ex–y, then show that `"dy"/"dx" = logx/(1 + logx)^2`.


If y = `x^(x^(x^(.^(.^.∞))`, then show that `"dy"/"dx" = y^2/(x(1 - logy).`.


If x = 2cos4(t + 3), y = 3sin4(t + 3), show that `"dy"/"dx" = -sqrt((3y)/(2x)`.


If x = `(2bt)/(1 + t^2), y = a((1 - t^2)/(1 + t^2)), "show that" "dx"/"dy" = -(b^2y)/(a^2x)`.


If y = log (log 2x), show that xy2 + y1 (1 + xy1) = 0.


Choose the correct option from the given alternatives :

If xy = yx, then `"dy"/"dx"` = ..........


If y = `25^(log_5sin_x) + 16^(log_4cos_x)` then `("d"y)/("d"x)` = ______.


If y = `(sin x)^sin x` , then `"dy"/"dx"` = ?


The rate at which the metal cools in moving air is proportional to the difference of temperatures between the metal and air. If the air temperature is 290 K and the metal temperature drops from 370 K to 330 K in 1 O min, then the time required to drop the temperature upto 295 K.


`"d"/"dx" [(cos x)^(log x)]` = ______.


`2^(cos^(2_x)`


If `"f" ("x") = sqrt (1 + "cos"^2 ("x"^2)), "then the value of f'" (sqrtpi/2)` is ____________.


If `f(x) = log [e^x ((3 - x)/(3 + x))^(1/3)]`,  then `f^'(1)` is equal to


If y = `(1 + 1/x)^x` then `(2sqrt(y_2(2) + 1/8))/((log  3/2 - 1/3))` is equal to ______.


If y = `x^(x^2)`, then `dy/dx` is equal to ______.


If `log_10 ((x^2 - y^2)/(x^2 + y^2))` = 2, then `dy/dx` is equal to ______.


The derivative of x2x w.r.t. x is ______.


Find `dy/dx`, if y = (log x)x.


Evaluate:

`int log x dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×