English

If x = a (cos t + t sin t) and y = a (sin t – t cos t), find d2ydx2 - Mathematics

Advertisements
Advertisements

Question

If x = a (cos t + t sin t) and y = a (sin t – t cos t), find `(d^2y)/dx^2`

Sum

Solution

Here, x = a (cost + t sin t) y = a (sin t – tcost)

Now, x = a (cos t + t sin t),

On differentiating with respect to t,

`dx/dt = a (- sin t + t * cos t + sin t)`

= at cos t

and y = a (sin t - t cos t)

On differentiating with respect to t,

`dy/dx = a[cos t - {t (- sin t) + cos t}]`

= a {cos t + t sin t - cos t}

= at sin t

`therefore dy/dx = (dy//dt)/(dx//dt)`

`= (at sin t)/(at cos t)` = tan t

Differentiating again with respect to x,

`(d^2y)/dx^2 = d/dx (dy/dx)`

`= d/dt (dy/dx) xx dt/dx`

`= d/dt (tan t) xx dt/dx`

`= sec^2 t xx 1/(at cos t)       ...[because  "dx"/"dt" = "at cos t"]`

`= 1/at sec^3 t`

∴ `(d^2y)/dx^2 = (sec^3 t)/(at), 0 <t <pi/2`

shaalaa.com
  Is there an error in this question or solution?
Chapter 5: Continuity and Differentiability - Exercise 5.9 [Page 192]

APPEARS IN

NCERT Mathematics [English] Class 12
Chapter 5 Continuity and Differentiability
Exercise 5.9 | Q 17 | Page 192

RELATED QUESTIONS

Differentiate the function with respect to x.

(x + 3)2 . (x + 4)3 . (x + 5)4


Differentiate the function with respect to x.

`(x + 1/x)^x + x^((1+1/x))`


Differentiate the function with respect to x.

`(sin x)^x + sin^(-1) sqrtx` 


Differentiate the function with respect to x.

xsin x + (sin x)cos x


Find `dy/dx` for the function given in the question:

yx = xy


Find `dy/dx` for the function given in the question:

(cos x)y = (cos y)x


If cos y = x cos (a + y), with cos a ≠ ± 1, prove that `dy/dx = cos^2(a+y)/(sin a)`


if `x^m y^n = (x + y)^(m + n)`, prove that `(d^2y)/(dx^2)= 0`


If ey ( x +1)  = 1, then show that  `(d^2 y)/(dx^2) = ((dy)/(dx))^2 .`


Find `(dy)/(dx) , if y = sin ^(-1) [2^(x +1 )/(1+4^x)]`


If `"x"^(5/3) . "y"^(2/3) = ("x + y")^(7/3)` , the show that `"dy"/"dx" = "y"/"x"`


If `log_5((x^4 + y^4)/(x^4 - y^4)) = 2, "show that""dy"/"dx" = (12x^3)/(13y^3)`.


If ey = yx, then show that `"dy"/"dx" = (logy)^2/(log y - 1)`.


If x = 2cos4(t + 3), y = 3sin4(t + 3), show that `"dy"/"dx" = -sqrt((3y)/(2x)`.


If x = log(1 + t2), y = t – tan–1t,show that `"dy"/"dx" = sqrt(e^x - 1)/(2)`.


Find the second order derivatives of the following : log(logx)


Find the nth derivative of the following : log (2x + 3)


If y = A cos (log x) + B sin (log x), show that x2y2 + xy1 + y = 0.


If f(x) = logx (log x) then f'(e) is ______


If log5 `((x^4 + "y"^4)/(x^4 - "y"^4))` = 2, show that `("dy")/("d"x) = (12x^3)/(13"y"^2)`


If y = 5x. x5. xx. 55 , find `("d"y)/("d"x)`


If x7 . y5 = (x + y)12, show that `("d"y)/("d"x) = y/x`


If y = `{f(x)}^{phi(x)}`, then `dy/dx` is ______ 


`"d"/"dx" [(cos x)^(log x)]` = ______.


If `("f"(x))/(log (sec x)) "dx"` = log(log sec x) + c, then f(x) = ______.


`2^(cos^(2_x)`


`8^x/x^8`


`log (x + sqrt(x^2 + "a"))`


If y = `log ((1 - x^2)/(1 + x^2))`, then `"dy"/"dx"` is equal to ______.


If y `= "e"^(3"x" + 7), "then the value" |("dy")/("dx")|_("x" = 0)` is ____________.


If `f(x) = log [e^x ((3 - x)/(3 + x))^(1/3)]`,  then `f^'(1)` is equal to


If y = `(1 + 1/x)^x` then `(2sqrt(y_2(2) + 1/8))/((log  3/2 - 1/3))` is equal to ______.


Derivative of log (sec θ + tan θ) with respect to sec θ at θ = `π/4` is ______.


If `log_10 ((x^2 - y^2)/(x^2 + y^2))` = 2, then `dy/dx` is equal to ______.


The derivative of x2x w.r.t. x is ______.


The derivative of log x with respect to `1/x` is ______.


Find the derivative of `y = log x + 1/x` with respect to x.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×