Advertisements
Advertisements
Question
`log (x + sqrt(x^2 + "a"))`
Solution
Let y = `log (x + sqrt(x^2 + "a"))`
Differentiating both sides w.r.t. x
`"dy"/"dx" = "d"/"dx" log (x + sqrt(x^2 + "a"))`
= `1/(x + sqrt(x^2 + "a")) * "d"/"dx" (x + sqrt(x^2 + "a"))`
= `1/(x + sqrt(x^2 + "a")) * [1 + 1/(2sqrt(x^2 + "a")) xx "d"/"dx" (x^2 + "a")]`
= `1/(x + sqrt(x^2 + "a")) * [1 + 1/(2sqrt(x^2 + "a")) * 2x]`
= `1/(x + sqrt(x^2 + "a")) * [1 + x/(sqrt(x^2 + "a"))]`
= `1/(x + sqrt(x^2 + "a")) * ((sqrt(x^2 + "a") + x)/(sqrt(x^2 + "a")))`
= `1/(sqrt(x^2 + "a")`
Hence. `"dy"/"dx" = 1/sqrt(x^2 + "a")`
APPEARS IN
RELATED QUESTIONS
If `y=log[x+sqrt(x^2+a^2)] ` show that `(x^2+a^2)(d^2y)/(dx^2)+xdy/dx=0`
Differentiate the function with respect to x.
`x^(xcosx) + (x^2 + 1)/(x^2 -1)`
Differentiate w.r.t. x the function:
xx + xa + ax + aa, for some fixed a > 0 and x > 0
If cos y = x cos (a + y), with cos a ≠ ± 1, prove that `dy/dx = cos^2(a+y)/(sin a)`
If x = a (cos t + t sin t) and y = a (sin t – t cos t), find `(d^2y)/dx^2`
Find `(dy)/(dx) , if y = sin ^(-1) [2^(x +1 )/(1+4^x)]`
Evaluate
`int 1/(16 - 9x^2) dx`
Find `dy/dx` if y = xx + 5x
Find `(d^2y)/(dx^2)` , if y = log x
If log (x + y) = log(xy) + p, where p is a constant, then prove that `"dy"/"dx" = (-y^2)/(x^2)`.
If x = esin3t, y = ecos3t, then show that `dy/dx = -(ylogx)/(xlogy)`.
If x = log(1 + t2), y = t – tan–1t,show that `"dy"/"dx" = sqrt(e^x - 1)/(2)`.
If x = sin–1(et), y = `sqrt(1 - e^(2t)), "show that" sin x + dy/dx` = 0
Choose the correct option from the given alternatives :
If xy = yx, then `"dy"/"dx"` = ..........
If log5 `((x^4 + "y"^4)/(x^4 - "y"^4))` = 2, show that `("dy")/("d"x) = (12x^3)/(13"y"^2)`
If y = 5x. x5. xx. 55 , find `("d"y)/("d"x)`
lf y = `2^(x^(2^(x^(...∞))))`, then x(1 - y logx logy)`dy/dx` = ______
`"d"/"dx" [(cos x)^(log x)]` = ______.
Derivative of `log_6`x with respect 6x to is ______
`2^(cos^(2_x)`
`log [log(logx^5)]`
If y = `log ((1 - x^2)/(1 + x^2))`, then `"dy"/"dx"` is equal to ______.
If `"y" = "e"^(1/2log (1 + "tan"^2"x")), "then" "dy"/"dx"` is equal to ____________.
If y = `(1 + 1/x)^x` then `(2sqrt(y_2(2) + 1/8))/((log 3/2 - 1/3))` is equal to ______.
If y = `log(x + sqrt(x^2 + 4))`, show that `dy/dx = 1/sqrt(x^2 + 4)`
Find the derivative of `y = log x + 1/x` with respect to x.