English

Alog(x+x2+a) - Mathematics

Advertisements
Advertisements

Question

`log (x + sqrt(x^2 + "a"))`

Sum

Solution

Let y = `log (x + sqrt(x^2 + "a"))`

Differentiating both sides w.r.t. x

`"dy"/"dx" = "d"/"dx" log (x + sqrt(x^2 + "a"))`

= `1/(x + sqrt(x^2 + "a")) * "d"/"dx" (x + sqrt(x^2 + "a"))`

=  `1/(x + sqrt(x^2 + "a")) * [1 + 1/(2sqrt(x^2 + "a")) xx "d"/"dx" (x^2 + "a")]`

= `1/(x + sqrt(x^2 + "a")) * [1 + 1/(2sqrt(x^2 + "a")) * 2x]`

= `1/(x + sqrt(x^2 + "a")) * [1 + x/(sqrt(x^2 + "a"))]`

= `1/(x + sqrt(x^2 + "a")) * ((sqrt(x^2 + "a") + x)/(sqrt(x^2 + "a")))`

= `1/(sqrt(x^2 + "a")`

Hence. `"dy"/"dx" = 1/sqrt(x^2 + "a")`

shaalaa.com
  Is there an error in this question or solution?
Chapter 5: Continuity And Differentiability - Exercise [Page 109]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 12
Chapter 5 Continuity And Differentiability
Exercise | Q 27 | Page 109

RELATED QUESTIONS

 

If `y=log[x+sqrt(x^2+a^2)] ` show that `(x^2+a^2)(d^2y)/(dx^2)+xdy/dx=0`

 

Differentiate the function with respect to x.

`x^(xcosx) + (x^2 + 1)/(x^2 -1)`


Differentiate w.r.t. x the function:

xx + xa + ax + aa, for some fixed a > 0 and x > 0


If cos y = x cos (a + y), with cos a ≠ ± 1, prove that `dy/dx = cos^2(a+y)/(sin a)`


If x = a (cos t + t sin t) and y = a (sin t – t cos t), find `(d^2y)/dx^2`


Find `(dy)/(dx) , if y = sin ^(-1) [2^(x +1 )/(1+4^x)]`


Evaluate 
`int  1/(16 - 9x^2) dx`


Find `dy/dx` if y = x+ 5x


Find `(d^2y)/(dx^2)` , if y = log x


If log (x + y) = log(xy) + p, where p is a constant, then prove that `"dy"/"dx" = (-y^2)/(x^2)`.


If x = esin3t, y = ecos3t, then show that `dy/dx = -(ylogx)/(xlogy)`.


If x = log(1 + t2), y = t – tan–1t,show that `"dy"/"dx" = sqrt(e^x - 1)/(2)`.


If x = sin–1(et), y = `sqrt(1 - e^(2t)), "show that"  sin x + dy/dx` = 0


Choose the correct option from the given alternatives :

If xy = yx, then `"dy"/"dx"` = ..........


If log5 `((x^4 + "y"^4)/(x^4 - "y"^4))` = 2, show that `("dy")/("d"x) = (12x^3)/(13"y"^2)`


If y = 5x. x5. xx. 55 , find `("d"y)/("d"x)`


lf y = `2^(x^(2^(x^(...∞))))`, then x(1 - y logx logy)`dy/dx` = ______  


`"d"/"dx" [(cos x)^(log x)]` = ______.


Derivative of `log_6`x with respect 6x to is ______


`2^(cos^(2_x)`


`log [log(logx^5)]`


If y = `log ((1 - x^2)/(1 + x^2))`, then `"dy"/"dx"` is equal to ______.


If `"y" = "e"^(1/2log (1 +  "tan"^2"x")), "then"  "dy"/"dx"` is equal to ____________.


If y = `(1 + 1/x)^x` then `(2sqrt(y_2(2) + 1/8))/((log  3/2 - 1/3))` is equal to ______.


If y = `log(x + sqrt(x^2 + 4))`, show that `dy/dx = 1/sqrt(x^2 + 4)`


Find the derivative of `y = log x + 1/x` with respect to x.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×