English

Log[log(logx5)] - Mathematics

Advertisements
Advertisements

Question

`log [log(logx^5)]`

Sum

Solution

Let y = `log [log(logx^5)]`

Differentiating both sides w.r.t. x

`"dy"/"dx" = "d"/"dx" log [log(log x^5)]`

= `1/(log(log x^5)) xx "d"/"dx" log (log x^5)`

= `1/(log(log x^5)) xx 1/(log(x^5)) xx "d"/"dx" log x^5`

= `1/(log(log x^5)) * 1/(log (x^5)) * 1/x^5 * "d"/"dx" x^5`

= `1/(log(log x^5)) * 1/(log(x^5)) * 1/x^5 * 5x^4`

= `5/(x log (x^5) * log (log x^5))`

Hence, `"dy"/"dx" = 5/(x log (x^5) * log (log x^5))`

shaalaa.com
  Is there an error in this question or solution?
Chapter 5: Continuity And Differentiability - Exercise [Page 109]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 12
Chapter 5 Continuity And Differentiability
Exercise | Q 28 | Page 109

RELATED QUESTIONS

Differentiate the function with respect to x.

`(x cos x)^x + (x sin x)^(1/x)`


Find `dy/dx` for the function given in the question:

yx = xy


Differentiate (x2 – 5x + 8) (x3 + 7x + 9) in three ways mentioned below:

  1. by using product rule
  2. by expanding the product to obtain a single polynomial.
  3. by logarithmic differentiation.

Do they all give the same answer?


If u, v and w are functions of x, then show that `d/dx(u.v.w) = (du)/dx v.w+u. (dv)/dx.w + u.v. (dw)/dx` in two ways-first by repeated application of product rule, second by logarithmic differentiation.


If x = a (cos t + t sin t) and y = a (sin t – t cos t), find `(d^2y)/dx^2`


If `y = e^(acos^(-1)x)`, -1 <= x <= 1 show that `(1- x^2) (d^2y)/(dx^2) -x dy/dx - a^2y = 0`


Evaluate 
`int  1/(16 - 9x^2) dx`


Differentiate  
log (1 + x2) w.r.t. tan-1 (x)


Differentiate : log (1 + x2)  w.r.t. cot-1 x. 


 Solve the following differential equation: (3xy + y2) dx + (x2 + xy) dy = 0 


If log (x + y) = log(xy) + p, where p is a constant, then prove that `"dy"/"dx" = (-y^2)/(x^2)`.


If xy = ex–y, then show that `"dy"/"dx" = logx/(1 + logx)^2`.


Find the second order derivatives of the following : x3.logx


If y = log (log 2x), show that xy2 + y1 (1 + xy1) = 0.


If y = A cos (log x) + B sin (log x), show that x2y2 + xy1 + y = 0.


If x7 . y5 = (x + y)12, show that `("d"y)/("d"x) = y/x`


Derivative of loge2 (logx) with respect to x is _______.


lf y = `2^(x^(2^(x^(...∞))))`, then x(1 - y logx logy)`dy/dx` = ______  


If xy = ex-y, then `"dy"/"dx"` at x = 1 is ______.


`2^(cos^(2_x)`


Given f(x) = `log((1 + x)/(1 - x))` and g(x) = `(3x + x^3)/(1 + 3x^2)`, then fog(x) equals


The derivative of x2x w.r.t. x is ______.


If y = `log(x + sqrt(x^2 + 4))`, show that `dy/dx = 1/sqrt(x^2 + 4)`


The derivative of log x with respect to `1/x` is ______.


Evaluate:

`int log x dx`


Find the derivative of `y = log x + 1/x` with respect to x.


If xy = yx, then find `dy/dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×