Advertisements
Advertisements
प्रश्न
`log [log(logx^5)]`
उत्तर
Let y = `log [log(logx^5)]`
Differentiating both sides w.r.t. x
`"dy"/"dx" = "d"/"dx" log [log(log x^5)]`
= `1/(log(log x^5)) xx "d"/"dx" log (log x^5)`
= `1/(log(log x^5)) xx 1/(log(x^5)) xx "d"/"dx" log x^5`
= `1/(log(log x^5)) * 1/(log (x^5)) * 1/x^5 * "d"/"dx" x^5`
= `1/(log(log x^5)) * 1/(log(x^5)) * 1/x^5 * 5x^4`
= `5/(x log (x^5) * log (log x^5))`
Hence, `"dy"/"dx" = 5/(x log (x^5) * log (log x^5))`
APPEARS IN
संबंधित प्रश्न
Differentiate the function with respect to x.
`(x cos x)^x + (x sin x)^(1/x)`
Find `dy/dx`for the function given in the question:
xy + yx = 1
Differentiate (x2 – 5x + 8) (x3 + 7x + 9) in three ways mentioned below:
- by using product rule
- by expanding the product to obtain a single polynomial.
- by logarithmic differentiation.
Do they all give the same answer?
if `x^m y^n = (x + y)^(m + n)`, prove that `(d^2y)/(dx^2)= 0`
Evaluate
`int 1/(16 - 9x^2) dx`
Find `(d^2y)/(dx^2)` , if y = log x
Find `"dy"/"dx"` , if `"y" = "x"^("e"^"x")`
Find `"dy"/"dx"` if y = xx + 5x
If `(sin "x")^"y" = "x" + "y", "find" (d"y")/(d"x")`
If y = (log x)x + xlog x, find `"dy"/"dx".`
If log (x + y) = log(xy) + p, where p is a constant, then prove that `"dy"/"dx" = (-y^2)/(x^2)`.
If xy = ex–y, then show that `"dy"/"dx" = logx/(1 + logx)^2`.
`"If" y = sqrt(logx + sqrt(log x + sqrt(log x + ... ∞))), "then show that" dy/dx = (1)/(x(2y - 1).`
If x = `asqrt(secθ - tanθ), y = asqrt(secθ + tanθ), "then show that" "dy"/"dx" = -y/x`.
If x = log(1 + t2), y = t – tan–1t,show that `"dy"/"dx" = sqrt(e^x - 1)/(2)`.
If y = `log(x + sqrt(x^2 + a^2))^m`, show that `(x^2 + a^2)(d^2y)/(dx^2) + x "d"/"dx"` = 0.
If y = A cos (log x) + B sin (log x), show that x2y2 + xy1 + y = 0.
If y = `log[4^(2x)((x^2 + 5)/sqrt(2x^3 - 4))^(3/2)]`, find `("d"y)/("d"x)`
If y = 5x. x5. xx. 55 , find `("d"y)/("d"x)`
Derivative of loge2 (logx) with respect to x is _______.
lf y = `2^(x^(2^(x^(...∞))))`, then x(1 - y logx logy)`dy/dx` = ______
`d/dx(x^{sinx})` = ______
If y = `("e"^"2x" sin x)/(x cos x), "then" "dy"/"dx" = ?`
If y = `log ((1 - x^2)/(1 + x^2))`, then `"dy"/"dx"` is equal to ______.
`lim_("x" -> -2) sqrt ("x"^2 + 5 - 3)/("x" + 2)` is equal to ____________.
If y = `(1 + 1/x)^x` then `(2sqrt(y_2(2) + 1/8))/((log 3/2 - 1/3))` is equal to ______.
Find `dy/dx`, if y = (log x)x.