Advertisements
Advertisements
प्रश्न
Find `"dy"/"dx"` if y = xx + 5x
उत्तर
y = xx + 5x
Let u = xx , v = 5x
Taking log on both sides of u
log u = x log x
Dtffercnttallng w.r.t. x
`therefore 1/"u" "du"/"dx" = "x" (1/"x") + "log x" . (1)`
`therefore "du"/"dx" = "u" (1 + "log x")`
= xx (1 + log x)
Differentiating v. w.r.t. x
`"dv"/"dx"` = 5x log 5
As y = u + v
`therefore "dy"/"dx" = "du"/"dx" + "dv"/"dx"`
`therefore "dy"/"dx" = "x"^"x" (1 + "log x") + 5^"x" "log" 5`
APPEARS IN
संबंधित प्रश्न
Differentiate the function with respect to x.
(x + 3)2 . (x + 4)3 . (x + 5)4
Differentiate the function with respect to x.
`(x + 1/x)^x + x^((1+1/x))`
If `y = e^(acos^(-1)x)`, -1 <= x <= 1 show that `(1- x^2) (d^2y)/(dx^2) -x dy/dx - a^2y = 0`
If `y = sin^-1 x + cos^-1 x , "find" dy/dx`
Find `dy/dx` if y = xx + 5x
xy = ex-y, then show that `"dy"/"dx" = ("log x")/("1 + log x")^2`
Differentiate : log (1 + x2) w.r.t. cot-1 x.
If `"x"^(5/3) . "y"^(2/3) = ("x + y")^(7/3)` , the show that `"dy"/"dx" = "y"/"x"`
If y = `(sin x)^sin x` , then `"dy"/"dx"` = ?
If y = `{f(x)}^{phi(x)}`, then `dy/dx` is ______
Derivative of `log_6`x with respect 6x to is ______
`log [log(logx^5)]`
If xm . yn = (x + y)m+n, prove that `"dy"/"dx" = y/x`
If y `= "e"^(3"x" + 7), "then the value" |("dy")/("dx")|_("x" = 0)` is ____________.
If y = `(1 + 1/x)^x` then `(2sqrt(y_2(2) + 1/8))/((log 3/2 - 1/3))` is equal to ______.
If `log_10 ((x^2 - y^2)/(x^2 + y^2))` = 2, then `dy/dx` is equal to ______.
The derivative of x2x w.r.t. x is ______.