Advertisements
Advertisements
प्रश्न
If `"x"^(5/3) . "y"^(2/3) = ("x + y")^(7/3)` , the show that `"dy"/"dx" = "y"/"x"`
उत्तर
`"x"^(5/3) . "y"^(2/3) = ("x + y")^(7/3)`
Taking logarithm of both the sides , we get
`5/3 "log x" + 2/3 "log y" = 7/3 "log (x + y)"`
Differentiating both sides w.r.t. x,
`5/3 . 1/"x" + 2/3 . 1/"y" "dy"/"dx" = 7/3 . 1/("x + y") [1 + "dy"/"dx"]`
`therefore 2/"3y" "dy"/"dx" - 7/(3 ("x + y")) "dy"/"dx" = 7/(3 ("x + y")) - 5/"3x"`
`therefore [2/"3y" - 7/(3 ("x + y"))] "dy"/"dx" = (7"x" - 5("x + y"))/("3x"("x + y"))`
`therefore [(2("x + y") - "7y")/("3y" ("x + y"))] "dy"/"dx" = (7"x" - 5("x + y"))/("3x"("x + y"))`
`therefore ("2x" - "5y")/"y" "dy"/"dx" = (2"x" - 5"y")/"x"`
`therefore "dy"/"dx" = "y"/"x"`
APPEARS IN
संबंधित प्रश्न
If `y=log[x+sqrt(x^2+a^2)] ` show that `(x^2+a^2)(d^2y)/(dx^2)+xdy/dx=0`
Differentiate the function with respect to x.
`sqrt(((x-1)(x-2))/((x-3)(x-4)(x-5)))`
Differentiate the function with respect to x.
`x^x - 2^(sin x)`
Differentiate the function with respect to x.
(x + 3)2 . (x + 4)3 . (x + 5)4
Differentiate the function with respect to x.
`(sin x)^x + sin^(-1) sqrtx`
Differentiate the function with respect to x.
xsin x + (sin x)cos x
If ey ( x +1) = 1, then show that `(d^2 y)/(dx^2) = ((dy)/(dx))^2 .`
If x = `asqrt(secθ - tanθ), y = asqrt(secθ + tanθ), "then show that" "dy"/"dx" = -y/x`.
If x = `(2bt)/(1 + t^2), y = a((1 - t^2)/(1 + t^2)), "show that" "dx"/"dy" = -(b^2y)/(a^2x)`.
Choose the correct option from the given alternatives :
If xy = yx, then `"dy"/"dx"` = ..........
If y = log [cos(x5)] then find `("d"y)/("d"x)`
If y = `log[sqrt((1 - cos((3x)/2))/(1 +cos((3x)/2)))]`, find `("d"y)/("d"x)`
The rate at which the metal cools in moving air is proportional to the difference of temperatures between the metal and air. If the air temperature is 290 K and the metal temperature drops from 370 K to 330 K in 1 O min, then the time required to drop the temperature upto 295 K.
If xy = ex-y, then `"dy"/"dx"` at x = 1 is ______.
`d/dx(x^{sinx})` = ______
Derivative of `log_6`x with respect 6x to is ______
If `"f" ("x") = sqrt (1 + "cos"^2 ("x"^2)), "then the value of f'" (sqrtpi/2)` is ____________.
If y = `(1 + 1/x)^x` then `(2sqrt(y_2(2) + 1/8))/((log 3/2 - 1/3))` is equal to ______.
If xy = yx, then find `dy/dx`