Advertisements
Advertisements
प्रश्न
Differentiate the function with respect to x.
`sqrt(((x-1)(x-2))/((x-3)(x-4)(x-5)))`
उत्तर
Let, y = `sqrt(((x - 1)(x - 2))/((x - 3)(x - 4)(x - 5)))` ...(1)
or, y = `[((x - 1)(x - 2))/((x - 3)(x - 4)(x - 5))]^(1/2)`
Taking logarithm of both sides,
`log y = 1/2 ((x - 1)(x - 2))/((x - 3)(x - 4)(x - 5)) ... [because log m^n = n log m]`
या `log y = 1/2 log (x - 1)(x - 2) - 1/2 log (x - 3)(x - 4)(x - 5) ... [because log m/n = log m - log n]`
`= 1/2 [log (x- 1) + log (x - 2)] - 1/2 [log (x - 3) + log (x - 4) + log (x - 5)] ...[because log m . n = log m + log n]`
Representing both sides by x,
`1/ y dy/dx = 1/2 [d/dx log (x - 1) + d/dx log (x - 2)] - 1/2 [d/dx log (x - 3) + d/dx log (x - 4) + d/dx log (x - 5)]`
`= 1/2 y [1/(x - 1) d/dx (x - 1) + 1/(x - 2) d/dx (x - 2)] - 1/2 y [1/(x - 3) d/dx (x - 3) + 1/(x - 4) d/dx (x - 4) + 1/(x - 5) d/dx (x - 5)]`
`= 1/2 y [1/(x - 1) + 1/(x - 2)] - 1/2 y [1/(x - 3) + 1/(x - 4) + 1/(x - 5)]`
`= 1/2 y [1/(x - 1) + 1/(x - 2) - 1/(x - 3) - 1/(x - 4) - 1/(x - 5)]`
Putting the value of y from equation (1),
`dy/dx = 1/2 sqrt(((x - 1)(x - 2))/((x - 3)(x - 4)(x - 5))) [1/(x - 1) + 1/(x - 2) - 1/(x - 3) - 1/(x - 4) - 1/(x - 5)]`
APPEARS IN
संबंधित प्रश्न
Differentiate the function with respect to x.
`(log x)^(cos x)`
Differentiate the function with respect to x.
(x + 3)2 . (x + 4)3 . (x + 5)4
Differentiate the function with respect to x.
`(sin x)^x + sin^(-1) sqrtx`
Differentiate the function with respect to x.
`x^(xcosx) + (x^2 + 1)/(x^2 -1)`
Find `dy/dx` for the function given in the question:
yx = xy
Find the derivative of the function given by f (x) = (1 + x) (1 + x2) (1 + x4) (1 + x8) and hence find f ′(1).
Differentiate w.r.t. x the function:
xx + xa + ax + aa, for some fixed a > 0 and x > 0
If x = a (cos t + t sin t) and y = a (sin t – t cos t), find `(d^2y)/dx^2`
If `y = e^(acos^(-1)x)`, -1 <= x <= 1 show that `(1- x^2) (d^2y)/(dx^2) -x dy/dx - a^2y = 0`
If `y = sin^-1 x + cos^-1 x , "find" dy/dx`
Differentiate
log (1 + x2) w.r.t. tan-1 (x)
Find `"dy"/"dx"` , if `"y" = "x"^("e"^"x")`
Find `"dy"/"dx"` if y = xx + 5x
If `"x"^(5/3) . "y"^(2/3) = ("x + y")^(7/3)` , the show that `"dy"/"dx" = "y"/"x"`
If log (x + y) = log(xy) + p, where p is a constant, then prove that `"dy"/"dx" = (-y^2)/(x^2)`.
If x = `asqrt(secθ - tanθ), y = asqrt(secθ + tanθ), "then show that" "dy"/"dx" = -y/x`.
If x = 2cos4(t + 3), y = 3sin4(t + 3), show that `"dy"/"dx" = -sqrt((3y)/(2x)`.
If x = log(1 + t2), y = t – tan–1t,show that `"dy"/"dx" = sqrt(e^x - 1)/(2)`.
Differentiate 3x w.r.t. logx3.
Find the second order derivatives of the following : x3.logx
Find the second order derivatives of the following : log(logx)
If y = log (log 2x), show that xy2 + y1 (1 + xy1) = 0.
Derivative of loge2 (logx) with respect to x is _______.
If y = `{f(x)}^{phi(x)}`, then `dy/dx` is ______
If y = tan-1 `((1 - cos 3x)/(sin 3x))`, then `"dy"/"dx"` = ______.
If `("f"(x))/(log (sec x)) "dx"` = log(log sec x) + c, then f(x) = ______.
`2^(cos^(2_x)`
`8^x/x^8`
`log (x + sqrt(x^2 + "a"))`
If xm . yn = (x + y)m+n, prove that `"dy"/"dx" = y/x`
`lim_("x" -> -2) sqrt ("x"^2 + 5 - 3)/("x" + 2)` is equal to ____________.
If `"f" ("x") = sqrt (1 + "cos"^2 ("x"^2)), "then the value of f'" (sqrtpi/2)` is ____________.
If y `= "e"^(3"x" + 7), "then the value" |("dy")/("dx")|_("x" = 0)` is ____________.
If `log_10 ((x^2 - y^2)/(x^2 + y^2))` = 2, then `dy/dx` is equal to ______.
If y = `log(x + sqrt(x^2 + 4))`, show that `dy/dx = 1/sqrt(x^2 + 4)`
Find the derivative of `y = log x + 1/x` with respect to x.
If xy = yx, then find `dy/dx`