Advertisements
Advertisements
प्रश्न
Find the second order derivatives of the following : x3.logx
उत्तर
Let y = x3.logx
Then, `"dy"/"dx" = "d"/"dx"(x^3.logx)`
= `x^3"d"/"dx"(logx) + (logx)."d"/"dx"(x^3)`
= `x^3 xx (1)/x + (logx) xx 3x^2`
= x2 + 3x2 log x
= x2(1 + 3 log x)
and
`(d^2y)/(dx^2) = "d"/"dx"[x^2(1 + 3logx)]`
= `x^2."d"/"dx"(1 + 3logx) + (1 + 3logx) xx 2x`
= `x^2(0 + 3 xx 1/x) + (1 + 3logx) xx 2x`
= 3x + 2x + 6x log x
= 5x + 6x log x
= x(5 + 6 log x).
APPEARS IN
संबंधित प्रश्न
Differentiate the function with respect to x.
`sqrt(((x-1)(x-2))/((x-3)(x-4)(x-5)))`
Differentiate the function with respect to x.
`x^x - 2^(sin x)`
Differentiate the function with respect to x.
(x + 3)2 . (x + 4)3 . (x + 5)4
Differentiate the function with respect to x.
`(x + 1/x)^x + x^((1+1/x))`
Differentiate the function with respect to x.
(log x)x + xlog x
Differentiate the function with respect to x.
`(sin x)^x + sin^(-1) sqrtx`
Differentiate the function with respect to x.
xsin x + (sin x)cos x
Differentiate the function with respect to x.
`x^(xcosx) + (x^2 + 1)/(x^2 -1)`
Find `dy/dx`for the function given in the question:
xy + yx = 1
Find `dy/dx` for the function given in the question:
yx = xy
Find `dy/dx` for the function given in the question:
`xy = e^((x – y))`
Differentiate w.r.t. x the function:
xx + xa + ax + aa, for some fixed a > 0 and x > 0
if `x^m y^n = (x + y)^(m + n)`, prove that `(d^2y)/(dx^2)= 0`
If `y = sin^-1 x + cos^-1 x , "find" dy/dx`
Evaluate
`int 1/(16 - 9x^2) dx`
Find `(d^2y)/(dx^2)` , if y = log x
If `"x"^(5/3) . "y"^(2/3) = ("x + y")^(7/3)` , the show that `"dy"/"dx" = "y"/"x"`
Solve the following differential equation: (3xy + y2) dx + (x2 + xy) dy = 0
If y = (log x)x + xlog x, find `"dy"/"dx".`
If ey = yx, then show that `"dy"/"dx" = (logy)^2/(log y - 1)`.
If x = sin–1(et), y = `sqrt(1 - e^(2t)), "show that" sin x + dy/dx` = 0
If x = `(2bt)/(1 + t^2), y = a((1 - t^2)/(1 + t^2)), "show that" "dx"/"dy" = -(b^2y)/(a^2x)`.
If y = `log(x + sqrt(x^2 + a^2))^m`, show that `(x^2 + a^2)(d^2y)/(dx^2) + x "d"/"dx"` = 0.
Find the nth derivative of the following : log (ax + b)
If y = A cos (log x) + B sin (log x), show that x2y2 + xy1 + y = 0.
If log5 `((x^4 + "y"^4)/(x^4 - "y"^4))` = 2, show that `("dy")/("d"x) = (12x^3)/(13"y"^2)`
If y = 5x. x5. xx. 55 , find `("d"y)/("d"x)`
Derivative of loge2 (logx) with respect to x is _______.
If xy = ex-y, then `"dy"/"dx"` at x = 1 is ______.
`8^x/x^8`
If xm . yn = (x + y)m+n, prove that `"dy"/"dx" = y/x`
`lim_("x" -> 0)(1 - "cos x")/"x"^2` is equal to ____________.
If `"f" ("x") = sqrt (1 + "cos"^2 ("x"^2)), "then the value of f'" (sqrtpi/2)` is ____________.
If y = `(1 + 1/x)^x` then `(2sqrt(y_2(2) + 1/8))/((log 3/2 - 1/3))` is equal to ______.
If y = `9^(log_3x)`, find `dy/dx`.
Find the derivative of `y = log x + 1/x` with respect to x.