मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

If ey = yx, then show that dydxdydx=(logy)2logy-1. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

If ey = yx, then show that `"dy"/"dx" = (logy)^2/(log y - 1)`.

बेरीज

उत्तर

ey = y
∴ log ey = log yx
∴ y log e = x log y
∴ y = x log y            ...[∵ log e = 1]  ...(1)
Differentiating both sides w.r.t. x, we get
`"dy"/"dx" = x"d"/"dx"(logy) + (logy)."d"/"dx"(x)`

∴ `"dy"/"dx" = x xx (1)/y."dy"/"dx" + (logy) xx 1`

∴ `"dy"/"dx" = x/y"dy"/"dx" + log y`

∴ `(1 - x/y)"dy"/"dx"` = log y

∴ `((y - x)/(y))"dy"/"dx"` = log y

∴ `"dy"/"dx" = (ylogy)/(y - x)`

= `(ylogy)/(y - (y/logy)`               ...[By (1)]

∴ `"dy"/"dx" = (logy)^2/(log y - 1)`.
Alternative Method :
ey = yx
∴ log ey = log yx
∴ y log e = x log y
∴ y = x log y           ...[∵ log e = 1]
∴ x = `y/logy`
Differentiating both sides w.r.t. x, we get
`"dx"/"dy" = "d"/"dy"(y/logy)`

= `((logy)."d"/"dy"(y) - y."d"/"dy"(logy))/(logy)^2`

= `((logy) xx 1 - y xx (1)/y)/(logy)^2`

= `(logy - 1)/(logy)^2`

∴ `"dy"/"dx" = (1)/((dx/dy)) = (logy)^2/(logy - 1)`.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 1: Differentiation - Exercise 1.3 [पृष्ठ ४०]

APPEARS IN

संबंधित प्रश्‍न

Differentiate the following function with respect to x: `(log x)^x+x^(logx)`


 

If `y=log[x+sqrt(x^2+a^2)] ` show that `(x^2+a^2)(d^2y)/(dx^2)+xdy/dx=0`

 

Differentiate the function with respect to x.

(x + 3)2 . (x + 4)3 . (x + 5)4


Differentiate the function with respect to x.

`(x + 1/x)^x + x^((1+1/x))`


Differentiate the function with respect to x.

`(sin x)^x + sin^(-1) sqrtx` 


Differentiate the function with respect to x.

`(x cos x)^x + (x sin x)^(1/x)`


Find `dy/dx` for the function given in the question:

yx = xy


Find the derivative of the function given by f (x) = (1 + x) (1 + x2) (1 + x4) (1 + x8) and hence find f ′(1).


Find `dy/dx` if y = x+ 5x


If `"x"^(5/3) . "y"^(2/3) = ("x + y")^(7/3)` , the show that `"dy"/"dx" = "y"/"x"`


If `(sin "x")^"y" = "x" + "y", "find" (d"y")/(d"x")`


If y = (log x)x + xlog x, find `"dy"/"dx".`


If `log_10((x^3 - y^3)/(x^3 + y^3)) = 2, "show that" "dy"/"dx" = -(99x^2)/(101y^2)`


If `log_5((x^4 + y^4)/(x^4 - y^4)) = 2, "show that""dy"/"dx" = (12x^3)/(13y^3)`.


If xy = ex–y, then show that `"dy"/"dx" = logx/(1 + logx)^2`.


If x = `(2bt)/(1 + t^2), y = a((1 - t^2)/(1 + t^2)), "show that" "dx"/"dy" = -(b^2y)/(a^2x)`.


Choose the correct option from the given alternatives :

If xy = yx, then `"dy"/"dx"` = ..........


If y = `25^(log_5sin_x) + 16^(log_4cos_x)` then `("d"y)/("d"x)` = ______.


If y = `log[sqrt((1 - cos((3x)/2))/(1 +cos((3x)/2)))]`, find `("d"y)/("d"x)`


If y = `(sin x)^sin x` , then `"dy"/"dx"` = ?


lf y = `2^(x^(2^(x^(...∞))))`, then x(1 - y logx logy)`dy/dx` = ______  


If y = `{f(x)}^{phi(x)}`, then `dy/dx` is ______ 


`"d"/"dx" [(cos x)^(log x)]` = ______.


If `("f"(x))/(log (sec x)) "dx"` = log(log sec x) + c, then f(x) = ______.


Derivative of `log_6`x with respect 6x to is ______


`8^x/x^8`


`log (x + sqrt(x^2 + "a"))`


If xm . yn = (x + y)m+n, prove that `"dy"/"dx" = y/x`


If y = `log ((1 - x^2)/(1 + x^2))`, then `"dy"/"dx"` is equal to ______.


`lim_("x" -> 0)(1 - "cos x")/"x"^2` is equal to ____________.


The derivative of x2x w.r.t. x is ______.


If y = `9^(log_3x)`, find `dy/dx`.


Evaluate:

`int log x dx`


If xy = yx, then find `dy/dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×