Advertisements
Advertisements
प्रश्न
If ey = yx, then show that `"dy"/"dx" = (logy)^2/(log y - 1)`.
उत्तर
ey = yx
∴ log ey = log yx
∴ y log e = x log y
∴ y = x log y ...[∵ log e = 1] ...(1)
Differentiating both sides w.r.t. x, we get
`"dy"/"dx" = x"d"/"dx"(logy) + (logy)."d"/"dx"(x)`
∴ `"dy"/"dx" = x xx (1)/y."dy"/"dx" + (logy) xx 1`
∴ `"dy"/"dx" = x/y"dy"/"dx" + log y`
∴ `(1 - x/y)"dy"/"dx"` = log y
∴ `((y - x)/(y))"dy"/"dx"` = log y
∴ `"dy"/"dx" = (ylogy)/(y - x)`
= `(ylogy)/(y - (y/logy)` ...[By (1)]
∴ `"dy"/"dx" = (logy)^2/(log y - 1)`.
Alternative Method :
ey = yx
∴ log ey = log yx
∴ y log e = x log y
∴ y = x log y ...[∵ log e = 1]
∴ x = `y/logy`
Differentiating both sides w.r.t. x, we get
`"dx"/"dy" = "d"/"dy"(y/logy)`
= `((logy)."d"/"dy"(y) - y."d"/"dy"(logy))/(logy)^2`
= `((logy) xx 1 - y xx (1)/y)/(logy)^2`
= `(logy - 1)/(logy)^2`
∴ `"dy"/"dx" = (1)/((dx/dy)) = (logy)^2/(logy - 1)`.
APPEARS IN
संबंधित प्रश्न
Differentiate the following function with respect to x: `(log x)^x+x^(logx)`
If `y=log[x+sqrt(x^2+a^2)] ` show that `(x^2+a^2)(d^2y)/(dx^2)+xdy/dx=0`
Differentiate the function with respect to x.
(x + 3)2 . (x + 4)3 . (x + 5)4
Differentiate the function with respect to x.
`(x + 1/x)^x + x^((1+1/x))`
Differentiate the function with respect to x.
`(sin x)^x + sin^(-1) sqrtx`
Differentiate the function with respect to x.
`(x cos x)^x + (x sin x)^(1/x)`
Find `dy/dx` for the function given in the question:
yx = xy
Find the derivative of the function given by f (x) = (1 + x) (1 + x2) (1 + x4) (1 + x8) and hence find f ′(1).
Find `dy/dx` if y = xx + 5x
If `"x"^(5/3) . "y"^(2/3) = ("x + y")^(7/3)` , the show that `"dy"/"dx" = "y"/"x"`
If `(sin "x")^"y" = "x" + "y", "find" (d"y")/(d"x")`
If y = (log x)x + xlog x, find `"dy"/"dx".`
If `log_10((x^3 - y^3)/(x^3 + y^3)) = 2, "show that" "dy"/"dx" = -(99x^2)/(101y^2)`
If `log_5((x^4 + y^4)/(x^4 - y^4)) = 2, "show that""dy"/"dx" = (12x^3)/(13y^3)`.
If xy = ex–y, then show that `"dy"/"dx" = logx/(1 + logx)^2`.
If x = `(2bt)/(1 + t^2), y = a((1 - t^2)/(1 + t^2)), "show that" "dx"/"dy" = -(b^2y)/(a^2x)`.
Choose the correct option from the given alternatives :
If xy = yx, then `"dy"/"dx"` = ..........
If y = `25^(log_5sin_x) + 16^(log_4cos_x)` then `("d"y)/("d"x)` = ______.
If y = `log[sqrt((1 - cos((3x)/2))/(1 +cos((3x)/2)))]`, find `("d"y)/("d"x)`
If y = `(sin x)^sin x` , then `"dy"/"dx"` = ?
lf y = `2^(x^(2^(x^(...∞))))`, then x(1 - y logx logy)`dy/dx` = ______
If y = `{f(x)}^{phi(x)}`, then `dy/dx` is ______
`"d"/"dx" [(cos x)^(log x)]` = ______.
If `("f"(x))/(log (sec x)) "dx"` = log(log sec x) + c, then f(x) = ______.
Derivative of `log_6`x with respect 6x to is ______
`8^x/x^8`
`log (x + sqrt(x^2 + "a"))`
If xm . yn = (x + y)m+n, prove that `"dy"/"dx" = y/x`
If y = `log ((1 - x^2)/(1 + x^2))`, then `"dy"/"dx"` is equal to ______.
`lim_("x" -> 0)(1 - "cos x")/"x"^2` is equal to ____________.
The derivative of x2x w.r.t. x is ______.
If y = `9^(log_3x)`, find `dy/dx`.
Evaluate:
`int log x dx`
If xy = yx, then find `dy/dx`