Advertisements
Advertisements
प्रश्न
Find the derivative of the function given by f (x) = (1 + x) (1 + x2) (1 + x4) (1 + x8) and hence find f ′(1).
उत्तर
Given, f(x) = (1 + x) (1 + x2) (1 + x4) (1 + x8)
Taking logarithm of both sides,
log f (x) = log [(1 + x) (1 + x2) (1 + x4) (1 + x8)]
or log f(x) = log (1 + x) + log (1 + x2) + log (1 + x4) + log (1 + x8) ...[∵ log mn = log m + log n]
Differentiating both sides with respect to x,
`1/(f (x)) d/dx f (x) = 1/(1 + x) d/dx (1 + x) + 1/(1 + x^2) d/dx (1 + x^2) + 1/(1 + x^4) d/dx (1 + x^4) + 1/(1 + x^8) d/dx (1 + x^8)`
or `f' (x) = 1/(1 + x) + (2x)/(1 + x^2) + (4x)/(1 + x^4) + (8x)/(1 + x^8)`
or `f' (x) = f (x) [1/(1 + x) + (2x)/(1 + x^2) + (4x^3)/(1 + x^4) + (8x^7)/(1 + x^8)]`
`= (1 + x) (1 + x^2) + (1 + x^4)(1 + x^8) [1/(1 + x) + (2x)/(1 + x^2) + (4x^3)/(1 + x^4) + (8x^7)/(1 + x^8)]`
Putting x = 1,
f'(1) = (1 + 1) · (1 + 1) · (1 + 1) (1 + 1) `xx [1/(1 + 1) + 2/(1 + 1) + 3/(1 + 1) + 4/(1 + 1)]`
`= 2 xx 2 xx 2xx 2 xx [1/2 + 2/2 + 4/2 + 8/2]`
`= (2 xx 2 xx 2xx 2)/2 [1 + 2 + 4 + 8]`
`= 8 xx 15`
= 120
APPEARS IN
संबंधित प्रश्न
if xx+xy+yx=ab, then find `dy/dx`.
Differentiate the function with respect to x.
cos x . cos 2x . cos 3x
Differentiate the function with respect to x.
`(log x)^(cos x)`
Differentiate the function with respect to x.
`(x + 1/x)^x + x^((1+1/x))`
Differentiate the function with respect to x.
`x^(xcosx) + (x^2 + 1)/(x^2 -1)`
if `x^m y^n = (x + y)^(m + n)`, prove that `(d^2y)/(dx^2)= 0`
Differentiate : log (1 + x2) w.r.t. cot-1 x.
Solve the following differential equation: (3xy + y2) dx + (x2 + xy) dy = 0
If `log_10((x^3 - y^3)/(x^3 + y^3)) = 2, "show that" "dy"/"dx" = -(99x^2)/(101y^2)`
If x = `asqrt(secθ - tanθ), y = asqrt(secθ + tanθ), "then show that" "dy"/"dx" = -y/x`.
Differentiate 3x w.r.t. logx3.
Find the second order derivatives of the following : log(logx)
If y = A cos (log x) + B sin (log x), show that x2y2 + xy1 + y = 0.
If f(x) = logx (log x) then f'(e) is ______
If y = `25^(log_5sin_x) + 16^(log_4cos_x)` then `("d"y)/("d"x)` = ______.
If y = `(sin x)^sin x` , then `"dy"/"dx"` = ?
If y = `{f(x)}^{phi(x)}`, then `dy/dx` is ______
`"d"/"dx" [(cos x)^(log x)]` = ______.
If y = `("e"^"2x" sin x)/(x cos x), "then" "dy"/"dx" = ?`
`2^(cos^(2_x)`
`log [log(logx^5)]`
`lim_("x" -> 0)(1 - "cos x")/"x"^2` is equal to ____________.
If `"f" ("x") = sqrt (1 + "cos"^2 ("x"^2)), "then the value of f'" (sqrtpi/2)` is ____________.
If `"y" = "e"^(1/2log (1 + "tan"^2"x")), "then" "dy"/"dx"` is equal to ____________.
If y `= "e"^(3"x" + 7), "then the value" |("dy")/("dx")|_("x" = 0)` is ____________.
Given f(x) = `log((1 + x)/(1 - x))` and g(x) = `(3x + x^3)/(1 + 3x^2)`, then fog(x) equals
If y = `(1 + 1/x)^x` then `(2sqrt(y_2(2) + 1/8))/((log 3/2 - 1/3))` is equal to ______.
If `log_10 ((x^3 - y^3)/(x^3 + y^3))` = 2 then `dy/dx` = ______.
Find `dy/dx`, if y = (sin x)tan x – xlog x.
If y = `9^(log_3x)`, find `dy/dx`.
Evaluate:
`int log x dx`