मराठी

Find the derivative of the function given by f (x) = (1 + x) (1 + x2) (1 + x4) (1 + x8) and hence find f ′(1). - Mathematics

Advertisements
Advertisements

प्रश्न

Find the derivative of the function given by f (x) = (1 + x) (1 + x2) (1 + x4) (1 + x8) and hence find f ′(1).

बेरीज

उत्तर

Given, f(x) = (1 + x) (1 + x2) (1 + x4) (1 + x8)

Taking logarithm of both sides,

log f (x) = log [(1 + x) (1 + x2) (1 + x4) (1 + x8)]

or log f(x) = log (1 + x) + log (1 + x2) + log (1 + x4) + log (1 + x8)             ...[∵ log mn = log m + log n]

Differentiating both sides with respect to x,

`1/(f (x)) d/dx  f (x) = 1/(1 + x) d/dx (1 + x) + 1/(1 + x^2) d/dx (1 + x^2) + 1/(1 + x^4) d/dx (1 + x^4) + 1/(1 + x^8) d/dx (1 + x^8)`

or `f' (x) = 1/(1 + x) + (2x)/(1 + x^2) + (4x)/(1 + x^4) + (8x)/(1 + x^8)`

or `f' (x) =  f (x) [1/(1 + x) + (2x)/(1 + x^2) + (4x^3)/(1 + x^4) + (8x^7)/(1 + x^8)]`

`= (1 + x) (1 + x^2) + (1 + x^4)(1 + x^8) [1/(1 + x) + (2x)/(1 + x^2) + (4x^3)/(1 + x^4) + (8x^7)/(1 + x^8)]`

Putting x = 1,

f'(1) = (1 + 1) · (1 + 1) · (1 + 1) (1 + 1) `xx [1/(1 + 1) + 2/(1 + 1) + 3/(1 + 1) + 4/(1 + 1)]`

`= 2 xx 2 xx 2xx 2 xx [1/2 + 2/2 + 4/2 + 8/2]`

`= (2 xx 2 xx 2xx 2)/2 [1 + 2 + 4 + 8]`

`= 8 xx 15`

= 120

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 5: Continuity and Differentiability - Exercise 5.5 [पृष्ठ १७८]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
पाठ 5 Continuity and Differentiability
Exercise 5.5 | Q 16 | पृष्ठ १७८

व्हिडिओ ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्‍न

 

if xx+xy+yx=ab, then find `dy/dx`.


Differentiate the function with respect to x. 

cos x . cos 2x . cos 3x


Differentiate the function with respect to x.

`(log x)^(cos x)`


Differentiate the function with respect to x.

`(x + 1/x)^x + x^((1+1/x))`


Differentiate the function with respect to x.

`x^(xcosx) + (x^2 + 1)/(x^2 -1)`


if `x^m y^n = (x + y)^(m + n)`, prove that `(d^2y)/(dx^2)= 0`


Differentiate : log (1 + x2)  w.r.t. cot-1 x. 


 Solve the following differential equation: (3xy + y2) dx + (x2 + xy) dy = 0 


If `log_10((x^3 - y^3)/(x^3 + y^3)) = 2, "show that" "dy"/"dx" = -(99x^2)/(101y^2)`


If x = `asqrt(secθ - tanθ), y = asqrt(secθ + tanθ), "then show that" "dy"/"dx" = -y/x`.


Differentiate 3x w.r.t. logx3.


Find the second order derivatives of the following : log(logx)


If y = A cos (log x) + B sin (log x), show that x2y2 + xy1 + y = 0.


If f(x) = logx (log x) then f'(e) is ______


If y = `25^(log_5sin_x) + 16^(log_4cos_x)` then `("d"y)/("d"x)` = ______.


If y = `(sin x)^sin x` , then `"dy"/"dx"` = ?


If y = `{f(x)}^{phi(x)}`, then `dy/dx` is ______ 


`"d"/"dx" [(cos x)^(log x)]` = ______.


If y = `("e"^"2x" sin x)/(x cos x), "then" "dy"/"dx" = ?`


`2^(cos^(2_x)`


`log [log(logx^5)]`


`lim_("x" -> 0)(1 - "cos x")/"x"^2` is equal to ____________.


If `"f" ("x") = sqrt (1 + "cos"^2 ("x"^2)), "then the value of f'" (sqrtpi/2)` is ____________.


If `"y" = "e"^(1/2log (1 +  "tan"^2"x")), "then"  "dy"/"dx"` is equal to ____________.


If y `= "e"^(3"x" + 7), "then the value" |("dy")/("dx")|_("x" = 0)` is ____________.


Given f(x) = `log((1 + x)/(1 - x))` and g(x) = `(3x + x^3)/(1 + 3x^2)`, then fog(x) equals


If y = `(1 + 1/x)^x` then `(2sqrt(y_2(2) + 1/8))/((log  3/2 - 1/3))` is equal to ______.


If `log_10 ((x^3 - y^3)/(x^3 + y^3))` = 2 then `dy/dx` = ______.


Find `dy/dx`, if y = (sin x)tan x – xlog x.


If y = `9^(log_3x)`, find `dy/dx`.


Evaluate:

`int log x dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×