Advertisements
Advertisements
प्रश्न
Evaluate:
`int log x dx`
उत्तर
Let `I = int log x dx`
= `int log x * 1 dx`
`I = log x int 1 dx - int [int 1 dx * d/dx (log x)] dx`
= `(log x) (x) - int [x * 1/x] dx`
= `x log x - int 1 dx`
∴ I = x log x − x + c
APPEARS IN
संबंधित प्रश्न
Differentiate the following function with respect to x: `(log x)^x+x^(logx)`
if xx+xy+yx=ab, then find `dy/dx`.
Differentiate the function with respect to x.
cos x . cos 2x . cos 3x
Differentiate the function with respect to x.
`sqrt(((x-1)(x-2))/((x-3)(x-4)(x-5)))`
Differentiate the function with respect to x.
(log x)x + xlog x
Differentiate the function with respect to x.
xsin x + (sin x)cos x
Differentiate the function with respect to x.
`x^(xcosx) + (x^2 + 1)/(x^2 -1)`
Find `dy/dx` for the function given in the question:
yx = xy
If `y = e^(acos^(-1)x)`, -1 <= x <= 1 show that `(1- x^2) (d^2y)/(dx^2) -x dy/dx - a^2y = 0`
if `x^m y^n = (x + y)^(m + n)`, prove that `(d^2y)/(dx^2)= 0`
If `y = sin^-1 x + cos^-1 x , "find" dy/dx`
Find `(dy)/(dx) , if y = sin ^(-1) [2^(x +1 )/(1+4^x)]`
Find `dy/dx` if y = xx + 5x
Differentiate
log (1 + x2) w.r.t. tan-1 (x)
Find `(d^2y)/(dx^2)` , if y = log x
xy = ex-y, then show that `"dy"/"dx" = ("log x")/("1 + log x")^2`
If log (x + y) = log(xy) + p, where p is a constant, then prove that `"dy"/"dx" = (-y^2)/(x^2)`.
If y = `x^(x^(x^(.^(.^.∞))`, then show that `"dy"/"dx" = y^2/(x(1 - logy).`.
If ey = yx, then show that `"dy"/"dx" = (logy)^2/(log y - 1)`.
If x = esin3t, y = ecos3t, then show that `dy/dx = -(ylogx)/(xlogy)`.
If x = a cos3t, y = a sin3t, show that `"dy"/"dx" = -(y/x)^(1/3)`.
If x = 2cos4(t + 3), y = 3sin4(t + 3), show that `"dy"/"dx" = -sqrt((3y)/(2x)`.
If y = `log(x + sqrt(x^2 + a^2))^m`, show that `(x^2 + a^2)(d^2y)/(dx^2) + x "d"/"dx"` = 0.
Find the nth derivative of the following : log (2x + 3)
If y = log [cos(x5)] then find `("d"y)/("d"x)`
If log5 `((x^4 + "y"^4)/(x^4 - "y"^4))` = 2, show that `("dy")/("d"x) = (12x^3)/(13"y"^2)`
If xy = ex-y, then `"dy"/"dx"` at x = 1 is ______.
If `("f"(x))/(log (sec x)) "dx"` = log(log sec x) + c, then f(x) = ______.
If y = `("e"^"2x" sin x)/(x cos x), "then" "dy"/"dx" = ?`
Derivative of `log_6`x with respect 6x to is ______
`log (x + sqrt(x^2 + "a"))`
If y `= "e"^(3"x" + 7), "then the value" |("dy")/("dx")|_("x" = 0)` is ____________.
If `log_10 ((x^3 - y^3)/(x^3 + y^3))` = 2 then `dy/dx` = ______.
Find `dy/dx`, if y = (sin x)tan x – xlog x.
If y = `log(x + sqrt(x^2 + 4))`, show that `dy/dx = 1/sqrt(x^2 + 4)`
The derivative of log x with respect to `1/x` is ______.
Find `dy/dx`, if y = (log x)x.
Find the derivative of `y = log x + 1/x` with respect to x.
If xy = yx, then find `dy/dx`