Advertisements
Advertisements
प्रश्न
`log (x + sqrt(x^2 + "a"))`
उत्तर
Let y = `log (x + sqrt(x^2 + "a"))`
Differentiating both sides w.r.t. x
`"dy"/"dx" = "d"/"dx" log (x + sqrt(x^2 + "a"))`
= `1/(x + sqrt(x^2 + "a")) * "d"/"dx" (x + sqrt(x^2 + "a"))`
= `1/(x + sqrt(x^2 + "a")) * [1 + 1/(2sqrt(x^2 + "a")) xx "d"/"dx" (x^2 + "a")]`
= `1/(x + sqrt(x^2 + "a")) * [1 + 1/(2sqrt(x^2 + "a")) * 2x]`
= `1/(x + sqrt(x^2 + "a")) * [1 + x/(sqrt(x^2 + "a"))]`
= `1/(x + sqrt(x^2 + "a")) * ((sqrt(x^2 + "a") + x)/(sqrt(x^2 + "a")))`
= `1/(sqrt(x^2 + "a")`
Hence. `"dy"/"dx" = 1/sqrt(x^2 + "a")`
APPEARS IN
संबंधित प्रश्न
Differentiate the function with respect to x.
cos x . cos 2x . cos 3x
Differentiate the function with respect to x.
(x + 3)2 . (x + 4)3 . (x + 5)4
Find the derivative of the function given by f (x) = (1 + x) (1 + x2) (1 + x4) (1 + x8) and hence find f ′(1).
Differentiate (x2 – 5x + 8) (x3 + 7x + 9) in three ways mentioned below:
- by using product rule
- by expanding the product to obtain a single polynomial.
- by logarithmic differentiation.
Do they all give the same answer?
if `x^m y^n = (x + y)^(m + n)`, prove that `(d^2y)/(dx^2)= 0`
Evaluate
`int 1/(16 - 9x^2) dx`
Find `dy/dx` if y = xx + 5x
If `"x"^(5/3) . "y"^(2/3) = ("x + y")^(7/3)` , the show that `"dy"/"dx" = "y"/"x"`
If y = (log x)x + xlog x, find `"dy"/"dx".`
`"If" y = sqrt(logx + sqrt(log x + sqrt(log x + ... ∞))), "then show that" dy/dx = (1)/(x(2y - 1).`
If ey = yx, then show that `"dy"/"dx" = (logy)^2/(log y - 1)`.
If x = `asqrt(secθ - tanθ), y = asqrt(secθ + tanθ), "then show that" "dy"/"dx" = -y/x`.
If y = log (log 2x), show that xy2 + y1 (1 + xy1) = 0.
Find the nth derivative of the following : log (ax + b)
Choose the correct option from the given alternatives :
If xy = yx, then `"dy"/"dx"` = ..........
If y = `log[sqrt((1 - cos((3x)/2))/(1 +cos((3x)/2)))]`, find `("d"y)/("d"x)`
If y = `log[4^(2x)((x^2 + 5)/sqrt(2x^3 - 4))^(3/2)]`, find `("d"y)/("d"x)`
The rate at which the metal cools in moving air is proportional to the difference of temperatures between the metal and air. If the air temperature is 290 K and the metal temperature drops from 370 K to 330 K in 1 O min, then the time required to drop the temperature upto 295 K.
Derivative of loge2 (logx) with respect to x is _______.
If y = tan-1 `((1 - cos 3x)/(sin 3x))`, then `"dy"/"dx"` = ______.
If `("f"(x))/(log (sec x)) "dx"` = log(log sec x) + c, then f(x) = ______.
If xm . yn = (x + y)m+n, prove that `"dy"/"dx" = y/x`
`lim_("x" -> 0)(1 - "cos x")/"x"^2` is equal to ____________.
If `"f" ("x") = sqrt (1 + "cos"^2 ("x"^2)), "then the value of f'" (sqrtpi/2)` is ____________.
If y `= "e"^(3"x" + 7), "then the value" |("dy")/("dx")|_("x" = 0)` is ____________.
If `log_10 ((x^3 - y^3)/(x^3 + y^3))` = 2 then `dy/dx` = ______.
Find the derivative of `y = log x + 1/x` with respect to x.