मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

If y = log[42x(x2+52x3-4)32], find dydx - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

If y = `log[4^(2x)((x^2 + 5)/sqrt(2x^3 - 4))^(3/2)]`, find `("d"y)/("d"x)`

बेरीज

उत्तर

y = `log[4^(2x)((x^2 + 5)/sqrt(2x^3 - 4))^(3/2)]`

= `log4^(2x) + log((x^2 + 5)/sqrt(2x^3 - 4))^(3/2)`

= `2x log4 + 3/2[log(x^2 + 5)/(sqrt(2x^3 - 4))]`

= `2x log4 + 3/2[log(x^2 + 5) - logsqrt(2^3 - 4)]`

= `2x log4 + 3/2[log(x^2 + 5) - 3/4log(2x^3 - 4)]`

Differentiating w. r. t. x, we get

`("d"y)/("d"x) = "d"/("dx)[2xlog 4 + 3/2 log(x^2 + 5) - 3/4log(2x^3 - 4)]`

= `2log4*"d"/("d"x)(x) + 3/2*"d"/("d"x) [log(x^2 + 5)] - 3/4*"d"/("d"x) [log(2x^3 - 4)]`

= `2log4*1 + 3/*1/(x^2 + 5)*"d"/("d"x) (x^2 + 5) - 3/4*1/(2x^3 - 4)*"d"/("d"x)(2x^3 - 4)`

= `2log4 + 3/2*1/(x^2 + 5)*2x - 3/4*1/(2x^3 - 4)*6x^2`

∴ `("d"y)/("d"x) = 2log4 + (3x)/(x^2 + 5) - (9x^2)/(2(2x^3 - 4)`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 2.1: Differentiation - Short Answers II

संबंधित प्रश्‍न

 

If `y=log[x+sqrt(x^2+a^2)] ` show that `(x^2+a^2)(d^2y)/(dx^2)+xdy/dx=0`

 

Differentiate the function with respect to x. 

cos x . cos 2x . cos 3x


Differentiate the function with respect to x.

`sqrt(((x-1)(x-2))/((x-3)(x-4)(x-5)))`


Differentiate the function with respect to x.

`x^x - 2^(sin x)`


Differentiate the function with respect to x.

(log x)x + xlog x


Differentiate the function with respect to x.

xsin x + (sin x)cos x


Differentiate the function with respect to x.

`x^(xcosx) + (x^2 + 1)/(x^2 -1)`


Find `dy/dx`for the function given in the question:

xy + yx = 1


If u, v and w are functions of x, then show that `d/dx(u.v.w) = (du)/dx v.w+u. (dv)/dx.w + u.v. (dw)/dx` in two ways-first by repeated application of product rule, second by logarithmic differentiation.


If cos y = x cos (a + y), with cos a ≠ ± 1, prove that `dy/dx = cos^2(a+y)/(sin a)`


If `y = sin^-1 x + cos^-1 x , "find"  dy/dx`


Find `(dy)/(dx) , if y = sin ^(-1) [2^(x +1 )/(1+4^x)]`


Find `(d^2y)/(dx^2)` , if y = log x


Find `"dy"/"dx"` , if `"y" = "x"^("e"^"x")`


xy = ex-y, then show that  `"dy"/"dx" = ("log  x")/("1 + log x")^2`


Differentiate : log (1 + x2)  w.r.t. cot-1 x. 


 Solve the following differential equation: (3xy + y2) dx + (x2 + xy) dy = 0 


If `(sin "x")^"y" = "x" + "y", "find" (d"y")/(d"x")`


If xy = ex–y, then show that `"dy"/"dx" = logx/(1 + logx)^2`.


If x = a cos3t, y = a sin3t, show that `"dy"/"dx" = -(y/x)^(1/3)`.


If x = 2cos4(t + 3), y = 3sin4(t + 3), show that `"dy"/"dx" = -sqrt((3y)/(2x)`.


If x = log(1 + t2), y = t – tan–1t,show that `"dy"/"dx" = sqrt(e^x - 1)/(2)`.


Differentiate 3x w.r.t. logx3.


If y = `log(x + sqrt(x^2 + a^2))^m`, show that `(x^2 + a^2)(d^2y)/(dx^2) + x "d"/"dx"` = 0.


If f(x) = logx (log x) then f'(e) is ______


If xy = ex-y, then `"dy"/"dx"` at x = 1 is ______.


If y = tan-1 `((1 - cos 3x)/(sin 3x))`, then `"dy"/"dx"` = ______.


`d/dx(x^{sinx})` = ______ 


`log (x + sqrt(x^2 + "a"))`


`log [log(logx^5)]`


`lim_("x" -> 0)(1 - "cos x")/"x"^2` is equal to ____________.


If `"f" ("x") = sqrt (1 + "cos"^2 ("x"^2)), "then the value of f'" (sqrtpi/2)` is ____________.


If `log_10 ((x^3 - y^3)/(x^3 + y^3))` = 2 then `dy/dx` = ______.


Find `dy/dx`, if y = (sin x)tan x – xlog x.


Find `dy/dx`, if y = (log x)x.


Find the derivative of `y = log x + 1/x` with respect to x.


If xy = yx, then find `dy/dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×