Advertisements
Advertisements
प्रश्न
If y = `log[4^(2x)((x^2 + 5)/sqrt(2x^3 - 4))^(3/2)]`, find `("d"y)/("d"x)`
उत्तर
y = `log[4^(2x)((x^2 + 5)/sqrt(2x^3 - 4))^(3/2)]`
= `log4^(2x) + log((x^2 + 5)/sqrt(2x^3 - 4))^(3/2)`
= `2x log4 + 3/2[log(x^2 + 5)/(sqrt(2x^3 - 4))]`
= `2x log4 + 3/2[log(x^2 + 5) - logsqrt(2^3 - 4)]`
= `2x log4 + 3/2[log(x^2 + 5) - 3/4log(2x^3 - 4)]`
Differentiating w. r. t. x, we get
`("d"y)/("d"x) = "d"/("dx)[2xlog 4 + 3/2 log(x^2 + 5) - 3/4log(2x^3 - 4)]`
= `2log4*"d"/("d"x)(x) + 3/2*"d"/("d"x) [log(x^2 + 5)] - 3/4*"d"/("d"x) [log(2x^3 - 4)]`
= `2log4*1 + 3/*1/(x^2 + 5)*"d"/("d"x) (x^2 + 5) - 3/4*1/(2x^3 - 4)*"d"/("d"x)(2x^3 - 4)`
= `2log4 + 3/2*1/(x^2 + 5)*2x - 3/4*1/(2x^3 - 4)*6x^2`
∴ `("d"y)/("d"x) = 2log4 + (3x)/(x^2 + 5) - (9x^2)/(2(2x^3 - 4)`
APPEARS IN
संबंधित प्रश्न
If `y=log[x+sqrt(x^2+a^2)] ` show that `(x^2+a^2)(d^2y)/(dx^2)+xdy/dx=0`
Differentiate the function with respect to x.
cos x . cos 2x . cos 3x
Differentiate the function with respect to x.
`sqrt(((x-1)(x-2))/((x-3)(x-4)(x-5)))`
Differentiate the function with respect to x.
`x^x - 2^(sin x)`
Differentiate the function with respect to x.
(log x)x + xlog x
Differentiate the function with respect to x.
xsin x + (sin x)cos x
Differentiate the function with respect to x.
`x^(xcosx) + (x^2 + 1)/(x^2 -1)`
Find `dy/dx`for the function given in the question:
xy + yx = 1
If u, v and w are functions of x, then show that `d/dx(u.v.w) = (du)/dx v.w+u. (dv)/dx.w + u.v. (dw)/dx` in two ways-first by repeated application of product rule, second by logarithmic differentiation.
If cos y = x cos (a + y), with cos a ≠ ± 1, prove that `dy/dx = cos^2(a+y)/(sin a)`
If `y = sin^-1 x + cos^-1 x , "find" dy/dx`
Find `(dy)/(dx) , if y = sin ^(-1) [2^(x +1 )/(1+4^x)]`
Find `(d^2y)/(dx^2)` , if y = log x
Find `"dy"/"dx"` , if `"y" = "x"^("e"^"x")`
xy = ex-y, then show that `"dy"/"dx" = ("log x")/("1 + log x")^2`
Differentiate : log (1 + x2) w.r.t. cot-1 x.
Solve the following differential equation: (3xy + y2) dx + (x2 + xy) dy = 0
If `(sin "x")^"y" = "x" + "y", "find" (d"y")/(d"x")`
If xy = ex–y, then show that `"dy"/"dx" = logx/(1 + logx)^2`.
If x = a cos3t, y = a sin3t, show that `"dy"/"dx" = -(y/x)^(1/3)`.
If x = 2cos4(t + 3), y = 3sin4(t + 3), show that `"dy"/"dx" = -sqrt((3y)/(2x)`.
If x = log(1 + t2), y = t – tan–1t,show that `"dy"/"dx" = sqrt(e^x - 1)/(2)`.
Differentiate 3x w.r.t. logx3.
If y = `log(x + sqrt(x^2 + a^2))^m`, show that `(x^2 + a^2)(d^2y)/(dx^2) + x "d"/"dx"` = 0.
If f(x) = logx (log x) then f'(e) is ______
If xy = ex-y, then `"dy"/"dx"` at x = 1 is ______.
If y = tan-1 `((1 - cos 3x)/(sin 3x))`, then `"dy"/"dx"` = ______.
`d/dx(x^{sinx})` = ______
`log (x + sqrt(x^2 + "a"))`
`log [log(logx^5)]`
`lim_("x" -> 0)(1 - "cos x")/"x"^2` is equal to ____________.
If `"f" ("x") = sqrt (1 + "cos"^2 ("x"^2)), "then the value of f'" (sqrtpi/2)` is ____________.
If `log_10 ((x^3 - y^3)/(x^3 + y^3))` = 2 then `dy/dx` = ______.
Find `dy/dx`, if y = (sin x)tan x – xlog x.
Find `dy/dx`, if y = (log x)x.
Find the derivative of `y = log x + 1/x` with respect to x.
If xy = yx, then find `dy/dx`