Advertisements
Advertisements
प्रश्न
If y = `log[4^(2x)((x^2 + 5)/sqrt(2x^3 - 4))^(3/2)]`, find `("d"y)/("d"x)`
उत्तर
y = `log[4^(2x)((x^2 + 5)/sqrt(2x^3 - 4))^(3/2)]`
= `log4^(2x) + log((x^2 + 5)/sqrt(2x^3 - 4))^(3/2)`
= `2x log4 + 3/2[log(x^2 + 5)/(sqrt(2x^3 - 4))]`
= `2x log4 + 3/2[log(x^2 + 5) - logsqrt(2^3 - 4)]`
= `2x log4 + 3/2[log(x^2 + 5) - 3/4log(2x^3 - 4)]`
Differentiating w. r. t. x, we get
`("d"y)/("d"x) = "d"/("dx)[2xlog 4 + 3/2 log(x^2 + 5) - 3/4log(2x^3 - 4)]`
= `2log4*"d"/("d"x)(x) + 3/2*"d"/("d"x) [log(x^2 + 5)] - 3/4*"d"/("d"x) [log(2x^3 - 4)]`
= `2log4*1 + 3/*1/(x^2 + 5)*"d"/("d"x) (x^2 + 5) - 3/4*1/(2x^3 - 4)*"d"/("d"x)(2x^3 - 4)`
= `2log4 + 3/2*1/(x^2 + 5)*2x - 3/4*1/(2x^3 - 4)*6x^2`
∴ `("d"y)/("d"x) = 2log4 + (3x)/(x^2 + 5) - (9x^2)/(2(2x^3 - 4)`
APPEARS IN
संबंधित प्रश्न
Differentiate the function with respect to x.
cos x . cos 2x . cos 3x
Differentiate the function with respect to x.
`x^x - 2^(sin x)`
Differentiate the function with respect to x.
(x + 3)2 . (x + 4)3 . (x + 5)4
Differentiate the function with respect to x.
(log x)x + xlog x
Differentiate the function with respect to x.
`x^(xcosx) + (x^2 + 1)/(x^2 -1)`
Differentiate the function with respect to x.
`(x cos x)^x + (x sin x)^(1/x)`
Find `dy/dx`for the function given in the question:
xy + yx = 1
Find `dy/dx` for the function given in the question:
`xy = e^((x – y))`
Differentiate (x2 – 5x + 8) (x3 + 7x + 9) in three ways mentioned below:
- by using product rule
- by expanding the product to obtain a single polynomial.
- by logarithmic differentiation.
Do they all give the same answer?
If ey ( x +1) = 1, then show that `(d^2 y)/(dx^2) = ((dy)/(dx))^2 .`
Find `dy/dx` if y = xx + 5x
Find `"dy"/"dx"` if y = xx + 5x
If log (x + y) = log(xy) + p, where p is a constant, then prove that `"dy"/"dx" = (-y^2)/(x^2)`.
If `log_10((x^3 - y^3)/(x^3 + y^3)) = 2, "show that" "dy"/"dx" = -(99x^2)/(101y^2)`
`"If" y = sqrt(logx + sqrt(log x + sqrt(log x + ... ∞))), "then show that" dy/dx = (1)/(x(2y - 1).`
If x = sin–1(et), y = `sqrt(1 - e^(2t)), "show that" sin x + dy/dx` = 0
If x = `(2bt)/(1 + t^2), y = a((1 - t^2)/(1 + t^2)), "show that" "dx"/"dy" = -(b^2y)/(a^2x)`.
Find the second order derivatives of the following : x3.logx
If y = log (log 2x), show that xy2 + y1 (1 + xy1) = 0.
Find the nth derivative of the following : log (ax + b)
If y = `25^(log_5sin_x) + 16^(log_4cos_x)` then `("d"y)/("d"x)` = ______.
If y = log [cos(x5)] then find `("d"y)/("d"x)`
If y = `log[sqrt((1 - cos((3x)/2))/(1 +cos((3x)/2)))]`, find `("d"y)/("d"x)`
If log5 `((x^4 + "y"^4)/(x^4 - "y"^4))` = 2, show that `("dy")/("d"x) = (12x^3)/(13"y"^2)`
If y = `(sin x)^sin x` , then `"dy"/"dx"` = ?
lf y = `2^(x^(2^(x^(...∞))))`, then x(1 - y logx logy)`dy/dx` = ______
`log [log(logx^5)]`
If y = `log ((1 - x^2)/(1 + x^2))`, then `"dy"/"dx"` is equal to ______.
If `"f" ("x") = sqrt (1 + "cos"^2 ("x"^2)), "then the value of f'" (sqrtpi/2)` is ____________.
If `"y" = "e"^(1/2log (1 + "tan"^2"x")), "then" "dy"/"dx"` is equal to ____________.
If `f(x) = log [e^x ((3 - x)/(3 + x))^(1/3)]`, then `f^'(1)` is equal to
Derivative of log (sec θ + tan θ) with respect to sec θ at θ = `π/4` is ______.
The derivative of x2x w.r.t. x is ______.
Find `dy/dx`, if y = (sin x)tan x – xlog x.
Find the derivative of `y = log x + 1/x` with respect to x.
If xy = yx, then find `dy/dx`