हिंदी

Find the nth derivative of the following : log (ax + b) - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Find the nth derivative of the following : log (ax + b)

योग

उत्तर

Let y = log (ax + b)

Then `"dy"/"dx" = "d"/"dx"[log(ax + b)]`

= `(1)/(ax + b)."d"/"dx"(ax + b)`

= `(1)/(ax + b) xx (a xx 1 + 0)`

= `a/"ax + b"`

`(d^2y)/(dx^2) = "d"/"dx"(a/(ax + b))`

= `a"d"/"dx"(ax + b)^-1`

= `a(-1)(ax + b)^-2."d"/"dx"(ax + b)`

= `((-1)a)/((ax + b)^2) xx (a xx 1 + 0)`

= `((-1)a^2)/((ax + b)^2)`

`(d^3y)/(dx^3) = "d"/"dx"[((-1)^1a^2)/(ax + b)^2]`

= `(-1)^1a^2."d"/"dx"(ax + b)^-2`

= `(-1)^1a^2.(-2)(ax + b)^-3."d"/"dx"(ax + b)`

= `((-1)^2. 1.2.a^2)/(ax + b)^3 xx (a xx 1 + 0)`

= `((-1)^2 .2! a^3)/(ax + b)^3`
In general, the nth order derivative is given by
`(d^ny)/(dx^2) = ((-1)^(n - 1).(n - 1)!a^n)/(ax + b)^n`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 1: Differentiation - Exercise 1.5 [पृष्ठ ६०]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
अध्याय 1 Differentiation
Exercise 1.5 | Q 4.05 | पृष्ठ ६०

संबंधित प्रश्न

Differentiate the following function with respect to x: `(log x)^x+x^(logx)`


 

If `y=log[x+sqrt(x^2+a^2)] ` show that `(x^2+a^2)(d^2y)/(dx^2)+xdy/dx=0`

 

Differentiate the function with respect to x.

xsin x + (sin x)cos x


Differentiate the function with respect to x.

`(x cos x)^x + (x sin x)^(1/x)`


Find `dy/dx`for the function given in the question:

xy + yx = 1


If u, v and w are functions of x, then show that `d/dx(u.v.w) = (du)/dx v.w+u. (dv)/dx.w + u.v. (dw)/dx` in two ways-first by repeated application of product rule, second by logarithmic differentiation.


Find `(dy)/(dx) , if y = sin ^(-1) [2^(x +1 )/(1+4^x)]`


If `(sin "x")^"y" = "x" + "y", "find" (d"y")/(d"x")`


If log (x + y) = log(xy) + p, where p is a constant, then prove that `"dy"/"dx" = (-y^2)/(x^2)`.


If y = `x^(x^(x^(.^(.^.∞))`, then show that `"dy"/"dx" = y^2/(x(1 - logy).`.


If ey = yx, then show that `"dy"/"dx" = (logy)^2/(log y - 1)`.


If x = `asqrt(secθ - tanθ), y = asqrt(secθ + tanθ), "then show that" "dy"/"dx" = -y/x`.


If x = esin3t, y = ecos3t, then show that `dy/dx = -(ylogx)/(xlogy)`.


Find the second order derivatives of the following : log(logx)


If y = log (log 2x), show that xy2 + y1 (1 + xy1) = 0.


Find the nth derivative of the following : log (2x + 3)


If y = A cos (log x) + B sin (log x), show that x2y2 + xy1 + y = 0.


If y = `log[sqrt((1 - cos((3x)/2))/(1 +cos((3x)/2)))]`, find `("d"y)/("d"x)`


If x7 . y5 = (x + y)12, show that `("d"y)/("d"x) = y/x`


If y = `(sin x)^sin x` , then `"dy"/"dx"` = ?


lf y = `2^(x^(2^(x^(...∞))))`, then x(1 - y logx logy)`dy/dx` = ______  


If `("f"(x))/(log (sec x)) "dx"` = log(log sec x) + c, then f(x) = ______.


`2^(cos^(2_x)`


`log (x + sqrt(x^2 + "a"))`


`log [log(logx^5)]`


If y = `log ((1 - x^2)/(1 + x^2))`, then `"dy"/"dx"` is equal to ______.


If `f(x) = log [e^x ((3 - x)/(3 + x))^(1/3)]`,  then `f^'(1)` is equal to


If y = `(1 + 1/x)^x` then `(2sqrt(y_2(2) + 1/8))/((log  3/2 - 1/3))` is equal to ______.


If y = `x^(x^2)`, then `dy/dx` is equal to ______.


If `log_10 ((x^2 - y^2)/(x^2 + y^2))` = 2, then `dy/dx` is equal to ______.


The derivative of x2x w.r.t. x is ______.


Find `dy/dx`, if y = (sin x)tan x – xlog x.


If y = `9^(log_3x)`, find `dy/dx`.


Find `dy/dx`, if y = (log x)x.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×