Advertisements
Advertisements
प्रश्न
Find the nth derivative of the following : log (ax + b)
उत्तर
Let y = log (ax + b)
Then `"dy"/"dx" = "d"/"dx"[log(ax + b)]`
= `(1)/(ax + b)."d"/"dx"(ax + b)`
= `(1)/(ax + b) xx (a xx 1 + 0)`
= `a/"ax + b"`
`(d^2y)/(dx^2) = "d"/"dx"(a/(ax + b))`
= `a"d"/"dx"(ax + b)^-1`
= `a(-1)(ax + b)^-2."d"/"dx"(ax + b)`
= `((-1)a)/((ax + b)^2) xx (a xx 1 + 0)`
= `((-1)a^2)/((ax + b)^2)`
`(d^3y)/(dx^3) = "d"/"dx"[((-1)^1a^2)/(ax + b)^2]`
= `(-1)^1a^2."d"/"dx"(ax + b)^-2`
= `(-1)^1a^2.(-2)(ax + b)^-3."d"/"dx"(ax + b)`
= `((-1)^2. 1.2.a^2)/(ax + b)^3 xx (a xx 1 + 0)`
= `((-1)^2 .2! a^3)/(ax + b)^3`
In general, the nth order derivative is given by
`(d^ny)/(dx^2) = ((-1)^(n - 1).(n - 1)!a^n)/(ax + b)^n`
APPEARS IN
संबंधित प्रश्न
Differentiate the following function with respect to x: `(log x)^x+x^(logx)`
If `y=log[x+sqrt(x^2+a^2)] ` show that `(x^2+a^2)(d^2y)/(dx^2)+xdy/dx=0`
Differentiate the function with respect to x.
xsin x + (sin x)cos x
Differentiate the function with respect to x.
`(x cos x)^x + (x sin x)^(1/x)`
Find `dy/dx`for the function given in the question:
xy + yx = 1
If u, v and w are functions of x, then show that `d/dx(u.v.w) = (du)/dx v.w+u. (dv)/dx.w + u.v. (dw)/dx` in two ways-first by repeated application of product rule, second by logarithmic differentiation.
Find `(dy)/(dx) , if y = sin ^(-1) [2^(x +1 )/(1+4^x)]`
If `(sin "x")^"y" = "x" + "y", "find" (d"y")/(d"x")`
If log (x + y) = log(xy) + p, where p is a constant, then prove that `"dy"/"dx" = (-y^2)/(x^2)`.
If y = `x^(x^(x^(.^(.^.∞))`, then show that `"dy"/"dx" = y^2/(x(1 - logy).`.
If ey = yx, then show that `"dy"/"dx" = (logy)^2/(log y - 1)`.
If x = `asqrt(secθ - tanθ), y = asqrt(secθ + tanθ), "then show that" "dy"/"dx" = -y/x`.
If x = esin3t, y = ecos3t, then show that `dy/dx = -(ylogx)/(xlogy)`.
Find the second order derivatives of the following : log(logx)
If y = log (log 2x), show that xy2 + y1 (1 + xy1) = 0.
Find the nth derivative of the following : log (2x + 3)
If y = A cos (log x) + B sin (log x), show that x2y2 + xy1 + y = 0.
If y = `log[sqrt((1 - cos((3x)/2))/(1 +cos((3x)/2)))]`, find `("d"y)/("d"x)`
If x7 . y5 = (x + y)12, show that `("d"y)/("d"x) = y/x`
If y = `(sin x)^sin x` , then `"dy"/"dx"` = ?
lf y = `2^(x^(2^(x^(...∞))))`, then x(1 - y logx logy)`dy/dx` = ______
If `("f"(x))/(log (sec x)) "dx"` = log(log sec x) + c, then f(x) = ______.
`2^(cos^(2_x)`
`log (x + sqrt(x^2 + "a"))`
`log [log(logx^5)]`
If y = `log ((1 - x^2)/(1 + x^2))`, then `"dy"/"dx"` is equal to ______.
If `f(x) = log [e^x ((3 - x)/(3 + x))^(1/3)]`, then `f^'(1)` is equal to
If y = `(1 + 1/x)^x` then `(2sqrt(y_2(2) + 1/8))/((log 3/2 - 1/3))` is equal to ______.
If y = `x^(x^2)`, then `dy/dx` is equal to ______.
If `log_10 ((x^2 - y^2)/(x^2 + y^2))` = 2, then `dy/dx` is equal to ______.
The derivative of x2x w.r.t. x is ______.
Find `dy/dx`, if y = (sin x)tan x – xlog x.
If y = `9^(log_3x)`, find `dy/dx`.
Find `dy/dx`, if y = (log x)x.