हिंदी

If y = A cos (log x) + B sin (log x), show that x2y2 + xy1 + y = 0. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

If y = A cos (log x) + B sin (log x), show that x2y2 + xy1 + y = 0.

योग

उत्तर

y = A cos (log x) + B sin (log x)            ...(1)
Differentiating both sides w.r.t. x, we get

`"dy"/"dx" = "A""d"/"dx"[cos(logx)] + "B""d"/"dx"[sin(log x)]`

= `"A"[-sin (logx)]."d"/"dx"(logx) + "B"cos(logx)."d"/"dx"(logx)`

= `"A"sin(logx) xx (1)/x "B"cos(logx) xx(1)/x`

∴ `x"d"/"dx"(dy/dx) + "dy"/"dx"."d"/"dx"(x) = -"A""d"/"dx"[sin(logx)] +"B""d"/"dx"[cos(logx)]`

∴ `x(d^2y)/(dx2) + "dy"/"dx" xx 1 = -"A"cos(logx)."d"/"dx"(logx) + "B"[-sin(logx)]."d"/"dx"(logx)`

∴ xy2 + y1 = `-"A"cos(logx) xx(1)/x - "B"sin(logx) xx (1)/x`

∴ x2y2 + xy1 = – [A cos (log x) + B sin (log x)]  ...[By (1)]

∴ x2y2 + xy1 + y = 0.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 1: Differentiation - Miscellaneous Exercise 1 (II) [पृष्ठ ६४]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
अध्याय 1 Differentiation
Miscellaneous Exercise 1 (II) | Q 7.4 | पृष्ठ ६४

संबंधित प्रश्न

Differentiate the following function with respect to x: `(log x)^x+x^(logx)`


Differentiate the function with respect to x.

(x + 3)2 . (x + 4)3 . (x + 5)4


Differentiate the function with respect to x.

xsin x + (sin x)cos x


Differentiate the function with respect to x.

`x^(xcosx) + (x^2 + 1)/(x^2 -1)`


Find `dy/dx` for the function given in the question:

yx = xy


Find `dy/dx` for the function given in the question:

`xy = e^((x – y))`


Find the derivative of the function given by f (x) = (1 + x) (1 + x2) (1 + x4) (1 + x8) and hence find f ′(1).


Differentiate w.r.t. x the function:

xx + xa + ax + aa, for some fixed a > 0 and x > 0


If x = a (cos t + t sin t) and y = a (sin t – t cos t), find `(d^2y)/dx^2`


if `x^m y^n = (x + y)^(m + n)`, prove that `(d^2y)/(dx^2)= 0`


If ey ( x +1)  = 1, then show that  `(d^2 y)/(dx^2) = ((dy)/(dx))^2 .`


Find `dy/dx` if y = x+ 5x


Find `(d^2y)/(dx^2)` , if y = log x


If `"x"^(5/3) . "y"^(2/3) = ("x + y")^(7/3)` , the show that `"dy"/"dx" = "y"/"x"`


If `(sin "x")^"y" = "x" + "y", "find" (d"y")/(d"x")`


If `log_5((x^4 + y^4)/(x^4 - y^4)) = 2, "show that""dy"/"dx" = (12x^3)/(13y^3)`.


If xy = ex–y, then show that `"dy"/"dx" = logx/(1 + logx)^2`.


Differentiate 3x w.r.t. logx3.


Find the second order derivatives of the following : x3.logx


Find the second order derivatives of the following : log(logx)


Find the nth derivative of the following : log (ax + b)


If y = `log[4^(2x)((x^2 + 5)/sqrt(2x^3 - 4))^(3/2)]`, find `("d"y)/("d"x)`


If x7 . y5 = (x + y)12, show that `("d"y)/("d"x) = y/x`


The rate at which the metal cools in moving air is proportional to the difference of temperatures between the metal and air. If the air temperature is 290 K and the metal temperature drops from 370 K to 330 K in 1 O min, then the time required to drop the temperature upto 295 K.


lf y = `2^(x^(2^(x^(...∞))))`, then x(1 - y logx logy)`dy/dx` = ______  


If y = `{f(x)}^{phi(x)}`, then `dy/dx` is ______ 


If xy = ex-y, then `"dy"/"dx"` at x = 1 is ______.


`d/dx(x^{sinx})` = ______ 


`"d"/"dx" [(cos x)^(log x)]` = ______.


If y = `("e"^"2x" sin x)/(x cos x), "then" "dy"/"dx" = ?`


If xm . yn = (x + y)m+n, prove that `"dy"/"dx" = y/x`


If `f(x) = log [e^x ((3 - x)/(3 + x))^(1/3)]`,  then `f^'(1)` is equal to


If y = `x^(x^2)`, then `dy/dx` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×