Advertisements
Advertisements
प्रश्न
Find `dy/dx` for the function given in the question:
yx = xy
उत्तर
Given, yx = xy
Taking logarithm of both sides, log yx = log xy
x log y = y log x
Differentiating both sides with respect to x,
`=> x d/dx log y + log y d/dx (x)`
`= y d/dx log x + log x d/dx y`
`=> x xx 1/y dy/dx + log y xx 1 = y xx 1/x + log x dy/dx`
`=> x/y dy/dx + log y = y/x + log x dy/dx `
`=> x/y dy/dx - log x dy/dx = y /x - log y`
`=> dy/dx (x/y - log x) = y /x - log y`
`=> dy/dx (x^2 - xy log x) = y ^2 - xy log y` On multiplying by xy,
`therefore dy/dx = (y ^2 - xy log y)/(x^2 - xy log x)`
APPEARS IN
संबंधित प्रश्न
if xx+xy+yx=ab, then find `dy/dx`.
Differentiate the function with respect to x.
(log x)x + xlog x
Differentiate the function with respect to x.
`(sin x)^x + sin^(-1) sqrtx`
Find `dy/dx` for the function given in the question:
`xy = e^((x – y))`
Find the derivative of the function given by f (x) = (1 + x) (1 + x2) (1 + x4) (1 + x8) and hence find f ′(1).
Differentiate (x2 – 5x + 8) (x3 + 7x + 9) in three ways mentioned below:
- by using product rule
- by expanding the product to obtain a single polynomial.
- by logarithmic differentiation.
Do they all give the same answer?
If `y = sin^-1 x + cos^-1 x , "find" dy/dx`
Differentiate
log (1 + x2) w.r.t. tan-1 (x)
Find `"dy"/"dx"` , if `"y" = "x"^("e"^"x")`
xy = ex-y, then show that `"dy"/"dx" = ("log x")/("1 + log x")^2`
If `"x"^(5/3) . "y"^(2/3) = ("x + y")^(7/3)` , the show that `"dy"/"dx" = "y"/"x"`
If log (x + y) = log(xy) + p, where p is a constant, then prove that `"dy"/"dx" = (-y^2)/(x^2)`.
If `log_10((x^3 - y^3)/(x^3 + y^3)) = 2, "show that" "dy"/"dx" = -(99x^2)/(101y^2)`
If y = `x^(x^(x^(.^(.^.∞))`, then show that `"dy"/"dx" = y^2/(x(1 - logy).`.
If ey = yx, then show that `"dy"/"dx" = (logy)^2/(log y - 1)`.
If x = a cos3t, y = a sin3t, show that `"dy"/"dx" = -(y/x)^(1/3)`.
If x = log(1 + t2), y = t – tan–1t,show that `"dy"/"dx" = sqrt(e^x - 1)/(2)`.
Find the second order derivatives of the following : x3.logx
Choose the correct option from the given alternatives :
If xy = yx, then `"dy"/"dx"` = ..........
Derivative of loge2 (logx) with respect to x is _______.
lf y = `2^(x^(2^(x^(...∞))))`, then x(1 - y logx logy)`dy/dx` = ______
`"d"/"dx" [(cos x)^(log x)]` = ______.
If `("f"(x))/(log (sec x)) "dx"` = log(log sec x) + c, then f(x) = ______.
Derivative of `log_6`x with respect 6x to is ______
`lim_("x" -> -2) sqrt ("x"^2 + 5 - 3)/("x" + 2)` is equal to ____________.
If `"y" = "e"^(1/2log (1 + "tan"^2"x")), "then" "dy"/"dx"` is equal to ____________.
Given f(x) = `log((1 + x)/(1 - x))` and g(x) = `(3x + x^3)/(1 + 3x^2)`, then fog(x) equals
If y = `(1 + 1/x)^x` then `(2sqrt(y_2(2) + 1/8))/((log 3/2 - 1/3))` is equal to ______.
If y = `x^(x^2)`, then `dy/dx` is equal to ______.
If `log_10 ((x^2 - y^2)/(x^2 + y^2))` = 2, then `dy/dx` is equal to ______.
The derivative of x2x w.r.t. x is ______.
Find `dy/dx`, if y = (sin x)tan x – xlog x.
Find `dy/dx`, if y = (log x)x.
If xy = yx, then find `dy/dx`