Advertisements
Advertisements
प्रश्न
If x = a cos3t, y = a sin3t, show that `"dy"/"dx" = -(y/x)^(1/3)`.
उत्तर १
x = a cos3t, y = a sin3t
Differentiating x and y w.r.t. t, we get
`"dx"/"dt" = a"d"/"dt"(cost)^3 = a.3(cost)^2"d"/"dt"(cost)`
= 3acos2t(– sint) = –3a cos2t sint
and
`"dy"/"dt" = a"d"/"dt"(sint)^3`
= `a.3(sin t)^2"d"/"dt"(sin t)`
= 3a sin2t. cos t
∴ `"dy"/"dx" = ((dy/dt))/((dx/"dt")`
= `(3a sin^2tcost)/(-3a cos^2tsint)`
= `-"sint"/"cost"` ...(1)
Now, x = a cos3t
∴ cos3t = `x/a`
∴ cos t = `(x/a)^(1/3)`
y = a sin3t
∴ sin3t = `y/a`
∴ cos3t = `(y/a)^(1/3)`
∴ from (1), `"dy"/"dx" = -(y^(1/3)/a^(1/3))/(x^(1/3)/a^(1/3)`
= `-(y/x)^(1/3)`
उत्तर २
Alternative Method :
x = a cos3t, y = a sin3t
∴ `cos^3t = x/a, sin^3t = y/a`
∴ `cos t = (x/a)^(1/3), sin t = (y/a)^(1/3)`
∴ cos2t + sin2t = 1 gives
`(x/a)^(2/3) + (y/a)^(2/3)` = 1
∴ `x^(2/3) + y^(2/3) =a^(2/3)`
Differentiating both sides w.r.t. t, we get
`(2)/(3)x^((-1)/(3)) + (2)/(3)y^((-1)/(3)),"dy"/"dx"` = 0
∴ `(2)/(3)y^((-1)/(3))"dy"/"dx" = -(2)/(3)x^((-1)/(3)`
∴ `"dy"/"dx" = -(x/y)^(-1/3) = -(y/x)^(1/3)`
APPEARS IN
संबंधित प्रश्न
If `y=log[x+sqrt(x^2+a^2)] ` show that `(x^2+a^2)(d^2y)/(dx^2)+xdy/dx=0`
Differentiate the function with respect to x.
cos x . cos 2x . cos 3x
Differentiate the function with respect to x.
`(x + 1/x)^x + x^((1+1/x))`
Differentiate the function with respect to x.
`(sin x)^x + sin^(-1) sqrtx`
Find `dy/dx`for the function given in the question:
xy + yx = 1
Differentiate (x2 – 5x + 8) (x3 + 7x + 9) in three ways mentioned below:
- by using product rule
- by expanding the product to obtain a single polynomial.
- by logarithmic differentiation.
Do they all give the same answer?
Differentiate : log (1 + x2) w.r.t. cot-1 x.
If `"x"^(5/3) . "y"^(2/3) = ("x + y")^(7/3)` , the show that `"dy"/"dx" = "y"/"x"`
Solve the following differential equation: (3xy + y2) dx + (x2 + xy) dy = 0
If xy = ex–y, then show that `"dy"/"dx" = logx/(1 + logx)^2`.
`"If" y = sqrt(logx + sqrt(log x + sqrt(log x + ... ∞))), "then show that" dy/dx = (1)/(x(2y - 1).`
If ey = yx, then show that `"dy"/"dx" = (logy)^2/(log y - 1)`.
If x = `(2bt)/(1 + t^2), y = a((1 - t^2)/(1 + t^2)), "show that" "dx"/"dy" = -(b^2y)/(a^2x)`.
If y = `log(x + sqrt(x^2 + a^2))^m`, show that `(x^2 + a^2)(d^2y)/(dx^2) + x "d"/"dx"` = 0.
Choose the correct option from the given alternatives :
If xy = yx, then `"dy"/"dx"` = ..........
If f(x) = logx (log x) then f'(e) is ______
If y = `25^(log_5sin_x) + 16^(log_4cos_x)` then `("d"y)/("d"x)` = ______.
If y = log [cos(x5)] then find `("d"y)/("d"x)`
If y = `log[sqrt((1 - cos((3x)/2))/(1 +cos((3x)/2)))]`, find `("d"y)/("d"x)`
If x7 . y5 = (x + y)12, show that `("d"y)/("d"x) = y/x`
If y = `(sin x)^sin x` , then `"dy"/"dx"` = ?
lf y = `2^(x^(2^(x^(...∞))))`, then x(1 - y logx logy)`dy/dx` = ______
`"d"/"dx" [(cos x)^(log x)]` = ______.
`2^(cos^(2_x)`
`log (x + sqrt(x^2 + "a"))`
`log [log(logx^5)]`
If xm . yn = (x + y)m+n, prove that `"dy"/"dx" = y/x`
If `"f" ("x") = sqrt (1 + "cos"^2 ("x"^2)), "then the value of f'" (sqrtpi/2)` is ____________.
If y `= "e"^(3"x" + 7), "then the value" |("dy")/("dx")|_("x" = 0)` is ____________.
Derivative of log (sec θ + tan θ) with respect to sec θ at θ = `π/4` is ______.
If y = `log(x + sqrt(x^2 + 4))`, show that `dy/dx = 1/sqrt(x^2 + 4)`
If y = `9^(log_3x)`, find `dy/dx`.
Find `dy/dx`, if y = (log x)x.
Evaluate:
`int log x dx`
If xy = yx, then find `dy/dx`