हिंदी

If x = a cos3t, y = a sin3t, show that dydxdydx=-(yx)13. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

If x = a cos3t, y = a sin3t, show that `"dy"/"dx" = -(y/x)^(1/3)`.

योग

उत्तर १

x = a cos3t, y = a sin3t
Differentiating x and y w.r.t. t, we get
`"dx"/"dt" = a"d"/"dt"(cost)^3 = a.3(cost)^2"d"/"dt"(cost)`
= 3acos2t(– sint) = –3a cos2t sint
and
`"dy"/"dt" = a"d"/"dt"(sint)^3`

= `a.3(sin t)^2"d"/"dt"(sin t)`
= 3a sin2t. cos t
∴ `"dy"/"dx" = ((dy/dt))/((dx/"dt")`

= `(3a sin^2tcost)/(-3a cos^2tsint)`

= `-"sint"/"cost"`                       ...(1)
Now, x = a cos3t
∴ cos3t = `x/a`

∴ cos t = `(x/a)^(1/3)`
y = a sin3t
∴ sin3t = `y/a`

∴ cos3t = `(y/a)^(1/3)`

∴ from (1), `"dy"/"dx" = -(y^(1/3)/a^(1/3))/(x^(1/3)/a^(1/3)`

= `-(y/x)^(1/3)`

shaalaa.com

उत्तर २

Alternative Method :
x = a cos3t, y = a sin3t
∴ `cos^3t = x/a, sin^3t = y/a`

∴ `cos t = (x/a)^(1/3), sin t = (y/a)^(1/3)`

∴ cos2t + sin2t = 1 gives

`(x/a)^(2/3) + (y/a)^(2/3)` = 1

∴ `x^(2/3) + y^(2/3) =a^(2/3)`
Differentiating both sides w.r.t. t, we get
`(2)/(3)x^((-1)/(3)) + (2)/(3)y^((-1)/(3)),"dy"/"dx"` = 0

∴ `(2)/(3)y^((-1)/(3))"dy"/"dx" = -(2)/(3)x^((-1)/(3)`

∴ `"dy"/"dx" = -(x/y)^(-1/3) = -(y/x)^(1/3)`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 1: Differentiation - Exercise 1.4 [पृष्ठ ४८]

APPEARS IN

संबंधित प्रश्न

 

If `y=log[x+sqrt(x^2+a^2)] ` show that `(x^2+a^2)(d^2y)/(dx^2)+xdy/dx=0`

 

Differentiate the function with respect to x. 

cos x . cos 2x . cos 3x


Differentiate the function with respect to x.

`(x + 1/x)^x + x^((1+1/x))`


Differentiate the function with respect to x.

`(sin x)^x + sin^(-1) sqrtx` 


Find `dy/dx`for the function given in the question:

xy + yx = 1


Differentiate (x2 – 5x + 8) (x3 + 7x + 9) in three ways mentioned below:

  1. by using product rule
  2. by expanding the product to obtain a single polynomial.
  3. by logarithmic differentiation.

Do they all give the same answer?


Differentiate : log (1 + x2)  w.r.t. cot-1 x. 


If `"x"^(5/3) . "y"^(2/3) = ("x + y")^(7/3)` , the show that `"dy"/"dx" = "y"/"x"`


 Solve the following differential equation: (3xy + y2) dx + (x2 + xy) dy = 0 


If xy = ex–y, then show that `"dy"/"dx" = logx/(1 + logx)^2`.


`"If"  y = sqrt(logx + sqrt(log x + sqrt(log x + ... ∞))), "then show that"  dy/dx = (1)/(x(2y - 1).`


If ey = yx, then show that `"dy"/"dx" = (logy)^2/(log y - 1)`.


If x = `(2bt)/(1 + t^2), y = a((1 - t^2)/(1 + t^2)), "show that" "dx"/"dy" = -(b^2y)/(a^2x)`.


If y = `log(x + sqrt(x^2 + a^2))^m`, show that `(x^2 + a^2)(d^2y)/(dx^2) + x "d"/"dx"` = 0.


Choose the correct option from the given alternatives :

If xy = yx, then `"dy"/"dx"` = ..........


If f(x) = logx (log x) then f'(e) is ______


If y = `25^(log_5sin_x) + 16^(log_4cos_x)` then `("d"y)/("d"x)` = ______.


If y = log [cos(x5)] then find `("d"y)/("d"x)`


If y = `log[sqrt((1 - cos((3x)/2))/(1 +cos((3x)/2)))]`, find `("d"y)/("d"x)`


If x7 . y5 = (x + y)12, show that `("d"y)/("d"x) = y/x`


If y = `(sin x)^sin x` , then `"dy"/"dx"` = ?


lf y = `2^(x^(2^(x^(...∞))))`, then x(1 - y logx logy)`dy/dx` = ______  


`"d"/"dx" [(cos x)^(log x)]` = ______.


`2^(cos^(2_x)`


`log (x + sqrt(x^2 + "a"))`


`log [log(logx^5)]`


If xm . yn = (x + y)m+n, prove that `"dy"/"dx" = y/x`


If `"f" ("x") = sqrt (1 + "cos"^2 ("x"^2)), "then the value of f'" (sqrtpi/2)` is ____________.


If y `= "e"^(3"x" + 7), "then the value" |("dy")/("dx")|_("x" = 0)` is ____________.


Derivative of log (sec θ + tan θ) with respect to sec θ at θ = `π/4` is ______.


If y = `log(x + sqrt(x^2 + 4))`, show that `dy/dx = 1/sqrt(x^2 + 4)`


If y = `9^(log_3x)`, find `dy/dx`.


Find `dy/dx`, if y = (log x)x.


Evaluate:

`int log x dx`


If xy = yx, then find `dy/dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×