Advertisements
Advertisements
प्रश्न
Differentiate the function with respect to x.
`(x + 1/x)^x + x^((1+1/x))`
उत्तर
Let y = `(x + 1/x)^x + x^((1+1/x)) = u +v`
Where `u = (x + 1/x)^x and v= x ^(1+1/x)`
Differentiating the above w.r.t.x we get
`dy/dx = (du)/dx + (dv)/dx` .....(i)
Now, `u = (x + 1/x)^x`
Taking log on both sides,we get,
`= logu - x log (x + 1/x)` ......(ii)
Differentiating (ii) w.r.t. x, we get
`1/u (du)/dx = x d/dx log (x + 1/x) + log (x + 1/x)(1)`
= `x/(x + 1/x) (1 - 1/x^2) + log (x + 1/x)`
= `(du)/dx = (x + 1/x)^x [x/(x + 1/x)(1 - 1/x^2) + log (x + 1/x)]` ....(iii)
Also, `v = x^((1 + 1/x))`
Taking log on both sides, we get,
`log v = (1 + 1/x) log x` ....(iv)
Differentiating (iv) w.r.t. x, we get,
`1/v (dv)/dx = (1 + 1/x)d/dx log x + log x d/dx (1 + 1/x)`
= `(1 + 1/x) 1/x + log x (-1/x^2)`
`(dv)/dx = x^(1+1/x) [(1 + 1/x) 1/x + log x ((-1)/x^2)]` ....(v)
Substituting the value of (iii) and (v) in (i), we get,
`dy/dx = (x + 1/x)^x [x/(x + 1/x) (1 - 1/x^2) + log (x + 1/x)] + x^((1 + 1/x)) [(1 + 1/x) 1/x + log x (-1/x^2)]`
APPEARS IN
संबंधित प्रश्न
Differentiate the function with respect to x.
(x + 3)2 . (x + 4)3 . (x + 5)4
Differentiate the function with respect to x.
xsin x + (sin x)cos x
Differentiate (x2 – 5x + 8) (x3 + 7x + 9) in three ways mentioned below:
- by using product rule
- by expanding the product to obtain a single polynomial.
- by logarithmic differentiation.
Do they all give the same answer?
If u, v and w are functions of x, then show that `d/dx(u.v.w) = (du)/dx v.w+u. (dv)/dx.w + u.v. (dw)/dx` in two ways-first by repeated application of product rule, second by logarithmic differentiation.
If `y = e^(acos^(-1)x)`, -1 <= x <= 1 show that `(1- x^2) (d^2y)/(dx^2) -x dy/dx - a^2y = 0`
Differentiate
log (1 + x2) w.r.t. tan-1 (x)
xy = ex-y, then show that `"dy"/"dx" = ("log x")/("1 + log x")^2`
Differentiate : log (1 + x2) w.r.t. cot-1 x.
Solve the following differential equation: (3xy + y2) dx + (x2 + xy) dy = 0
If `(sin "x")^"y" = "x" + "y", "find" (d"y")/(d"x")`
If y = (log x)x + xlog x, find `"dy"/"dx".`
If log (x + y) = log(xy) + p, where p is a constant, then prove that `"dy"/"dx" = (-y^2)/(x^2)`.
If `log_10((x^3 - y^3)/(x^3 + y^3)) = 2, "show that" "dy"/"dx" = -(99x^2)/(101y^2)`
If `log_5((x^4 + y^4)/(x^4 - y^4)) = 2, "show that""dy"/"dx" = (12x^3)/(13y^3)`.
If ey = yx, then show that `"dy"/"dx" = (logy)^2/(log y - 1)`.
If x = a cos3t, y = a sin3t, show that `"dy"/"dx" = -(y/x)^(1/3)`.
If x = log(1 + t2), y = t – tan–1t,show that `"dy"/"dx" = sqrt(e^x - 1)/(2)`.
If x = `(2bt)/(1 + t^2), y = a((1 - t^2)/(1 + t^2)), "show that" "dx"/"dy" = -(b^2y)/(a^2x)`.
Find the second order derivatives of the following : x3.logx
Find the second order derivatives of the following : log(logx)
If y = `log[4^(2x)((x^2 + 5)/sqrt(2x^3 - 4))^(3/2)]`, find `("d"y)/("d"x)`
If log5 `((x^4 + "y"^4)/(x^4 - "y"^4))` = 2, show that `("dy")/("d"x) = (12x^3)/(13"y"^2)`
Derivative of loge2 (logx) with respect to x is _______.
lf y = `2^(x^(2^(x^(...∞))))`, then x(1 - y logx logy)`dy/dx` = ______
If y = `{f(x)}^{phi(x)}`, then `dy/dx` is ______
If xy = ex-y, then `"dy"/"dx"` at x = 1 is ______.
If y = tan-1 `((1 - cos 3x)/(sin 3x))`, then `"dy"/"dx"` = ______.
`d/dx(x^{sinx})` = ______
`2^(cos^(2_x)`
`8^x/x^8`
If xm . yn = (x + y)m+n, prove that `"dy"/"dx" = y/x`
If y = `log ((1 - x^2)/(1 + x^2))`, then `"dy"/"dx"` is equal to ______.
If y `= "e"^(3"x" + 7), "then the value" |("dy")/("dx")|_("x" = 0)` is ____________.
If `log_10 ((x^2 - y^2)/(x^2 + y^2))` = 2, then `dy/dx` is equal to ______.
Find `dy/dx`, if y = (log x)x.
If xy = yx, then find `dy/dx`