हिंदी

Differentiate the function with respect to x. (x+1x)x+x(1+1x) - Mathematics

Advertisements
Advertisements

प्रश्न

Differentiate the function with respect to x.

`(x + 1/x)^x + x^((1+1/x))`

योग

उत्तर

Let y = `(x + 1/x)^x + x^((1+1/x)) = u +v`

Where `u = (x + 1/x)^x and v= x ^(1+1/x)`

Differentiating the above w.r.t.x we get

`dy/dx = (du)/dx + (dv)/dx`             .....(i)

Now, `u = (x + 1/x)^x`

Taking log on both sides,we get,

`= logu - x log (x + 1/x)`              ......(ii)

Differentiating (ii) w.r.t. x, we get

`1/u (du)/dx = x d/dx log (x + 1/x) + log (x + 1/x)(1)`

= `x/(x + 1/x) (1 - 1/x^2) + log (x + 1/x)`

= `(du)/dx = (x + 1/x)^x [x/(x + 1/x)(1 - 1/x^2) + log (x + 1/x)]`    ....(iii)

Also, `v = x^((1 + 1/x))`

Taking log on both sides, we get,

`log v = (1 + 1/x) log x`            ....(iv)

Differentiating (iv) w.r.t. x, we get,

`1/v (dv)/dx = (1 + 1/x)d/dx log x + log x d/dx (1 + 1/x)`

= `(1 + 1/x) 1/x + log x (-1/x^2)`

`(dv)/dx = x^(1+1/x) [(1 + 1/x) 1/x + log x ((-1)/x^2)]`      ....(v)

Substituting the value of (iii) and (v) in (i), we get,

`dy/dx = (x + 1/x)^x [x/(x + 1/x) (1 - 1/x^2) + log (x + 1/x)] + x^((1 + 1/x)) [(1 + 1/x) 1/x + log x (-1/x^2)]`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 5: Continuity and Differentiability - Exercise 5.5 [पृष्ठ १७८]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
अध्याय 5 Continuity and Differentiability
Exercise 5.5 | Q 6 | पृष्ठ १७८

वीडियो ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्न

Differentiate the function with respect to x.

(x + 3)2 . (x + 4)3 . (x + 5)4


Differentiate the function with respect to x.

xsin x + (sin x)cos x


Differentiate (x2 – 5x + 8) (x3 + 7x + 9) in three ways mentioned below:

  1. by using product rule
  2. by expanding the product to obtain a single polynomial.
  3. by logarithmic differentiation.

Do they all give the same answer?


If u, v and w are functions of x, then show that `d/dx(u.v.w) = (du)/dx v.w+u. (dv)/dx.w + u.v. (dw)/dx` in two ways-first by repeated application of product rule, second by logarithmic differentiation.


If `y = e^(acos^(-1)x)`, -1 <= x <= 1 show that `(1- x^2) (d^2y)/(dx^2) -x dy/dx - a^2y = 0`


Differentiate  
log (1 + x2) w.r.t. tan-1 (x)


xy = ex-y, then show that  `"dy"/"dx" = ("log  x")/("1 + log x")^2`


Differentiate : log (1 + x2)  w.r.t. cot-1 x. 


 Solve the following differential equation: (3xy + y2) dx + (x2 + xy) dy = 0 


If `(sin "x")^"y" = "x" + "y", "find" (d"y")/(d"x")`


If y = (log x)x + xlog x, find `"dy"/"dx".`


If log (x + y) = log(xy) + p, where p is a constant, then prove that `"dy"/"dx" = (-y^2)/(x^2)`.


If `log_10((x^3 - y^3)/(x^3 + y^3)) = 2, "show that" "dy"/"dx" = -(99x^2)/(101y^2)`


If `log_5((x^4 + y^4)/(x^4 - y^4)) = 2, "show that""dy"/"dx" = (12x^3)/(13y^3)`.


If ey = yx, then show that `"dy"/"dx" = (logy)^2/(log y - 1)`.


If x = a cos3t, y = a sin3t, show that `"dy"/"dx" = -(y/x)^(1/3)`.


If x = log(1 + t2), y = t – tan–1t,show that `"dy"/"dx" = sqrt(e^x - 1)/(2)`.


If x = `(2bt)/(1 + t^2), y = a((1 - t^2)/(1 + t^2)), "show that" "dx"/"dy" = -(b^2y)/(a^2x)`.


Find the second order derivatives of the following : x3.logx


Find the second order derivatives of the following : log(logx)


If y = `log[4^(2x)((x^2 + 5)/sqrt(2x^3 - 4))^(3/2)]`, find `("d"y)/("d"x)`


If log5 `((x^4 + "y"^4)/(x^4 - "y"^4))` = 2, show that `("dy")/("d"x) = (12x^3)/(13"y"^2)`


Derivative of loge2 (logx) with respect to x is _______.


lf y = `2^(x^(2^(x^(...∞))))`, then x(1 - y logx logy)`dy/dx` = ______  


If y = `{f(x)}^{phi(x)}`, then `dy/dx` is ______ 


If xy = ex-y, then `"dy"/"dx"` at x = 1 is ______.


If y = tan-1 `((1 - cos 3x)/(sin 3x))`, then `"dy"/"dx"` = ______.


`d/dx(x^{sinx})` = ______ 


`2^(cos^(2_x)`


`8^x/x^8`


If xm . yn = (x + y)m+n, prove that `"dy"/"dx" = y/x`


If y = `log ((1 - x^2)/(1 + x^2))`, then `"dy"/"dx"` is equal to ______.


If y `= "e"^(3"x" + 7), "then the value" |("dy")/("dx")|_("x" = 0)` is ____________.


If `log_10 ((x^2 - y^2)/(x^2 + y^2))` = 2, then `dy/dx` is equal to ______.


Find `dy/dx`, if y = (log x)x.


If xy = yx, then find `dy/dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×