हिंदी

Differentiate the function with respect to x. (log x)x + xlog x - Mathematics

Advertisements
Advertisements

प्रश्न

Differentiate the function with respect to x.

(log x)x + xlog x

योग

उत्तर

Let, y = (log x)x + xlog x

Again, let y = u + v

Differentiating both sides with respect to x,

`(dy)/dx = (du)/dx + (dv)/dx`   ....(1)

अब, u = (log x)x

Taking logarithm of both sides,

log v = log (log x)x = x log (log x)         ...[∵ log mn = n log m]

Differentiating both sides with respect to x,

`1/u (du)/dx = x d/dx log (log x) + log (log x) d/dx (x)`

`= x * 1/(log x) d/dx (log x) + log (log x) xx 1`

`= x * 1/(log x) 1/x + log (log x) = 1/(log x) + log (log x)`

`therefore (du)/dx = u [log (log x) + 1/(log x)] = (log x)^x [log (log x) + 1/log x]`

तथा v = `x^(log x)`

Taking logarithm of both sides,

log v = log xlog x = log x log x = (log x)2

Differentiating both sides with respect to x,

`1/v (dv)/dx = d/dx (log x)^2 = 2  log x  d/dx  log x = (2  log x)/x`

`therefore dv/dx = v (2/x log x) = 2/x (x^(log x) log x)`

From equation (1),

`(dy)/dx = (du)/dx + (dv)/dx` 

`∴ dy/dx = (logx^x) [1/logx + (logx)] + x^(log x) [(2 log x)/x]`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 5: Continuity and Differentiability - Exercise 5.5 [पृष्ठ १७८]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
अध्याय 5 Continuity and Differentiability
Exercise 5.5 | Q 7 | पृष्ठ १७८

वीडियो ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्न

Differentiate the following function with respect to x: `(log x)^x+x^(logx)`


Differentiate the function with respect to x.

`(sin x)^x + sin^(-1) sqrtx` 


Differentiate the function with respect to x.

`(x cos x)^x + (x sin x)^(1/x)`


Find `dy/dx`for the function given in the question:

xy + yx = 1


Find `dy/dx` for the function given in the question:

`xy = e^((x – y))`


Find the derivative of the function given by f (x) = (1 + x) (1 + x2) (1 + x4) (1 + x8) and hence find f ′(1).


If u, v and w are functions of x, then show that `d/dx(u.v.w) = (du)/dx v.w+u. (dv)/dx.w + u.v. (dw)/dx` in two ways-first by repeated application of product rule, second by logarithmic differentiation.


if `x^m y^n = (x + y)^(m + n)`, prove that `(d^2y)/(dx^2)= 0`


If `y = sin^-1 x + cos^-1 x , "find"  dy/dx`


Find `(dy)/(dx) , if y = sin ^(-1) [2^(x +1 )/(1+4^x)]`


Evaluate 
`int  1/(16 - 9x^2) dx`


Find `"dy"/"dx"` if y = xx + 5x


If `(sin "x")^"y" = "x" + "y", "find" (d"y")/(d"x")`


If y = (log x)x + xlog x, find `"dy"/"dx".`


If `log_5((x^4 + y^4)/(x^4 - y^4)) = 2, "show that""dy"/"dx" = (12x^3)/(13y^3)`.


`"If"  y = sqrt(logx + sqrt(log x + sqrt(log x + ... ∞))), "then show that"  dy/dx = (1)/(x(2y - 1).`


If x = `asqrt(secθ - tanθ), y = asqrt(secθ + tanθ), "then show that" "dy"/"dx" = -y/x`.


If x = esin3t, y = ecos3t, then show that `dy/dx = -(ylogx)/(xlogy)`.


If x = sin–1(et), y = `sqrt(1 - e^(2t)), "show that"  sin x + dy/dx` = 0


If x = `(2bt)/(1 + t^2), y = a((1 - t^2)/(1 + t^2)), "show that" "dx"/"dy" = -(b^2y)/(a^2x)`.


Find the second order derivatives of the following : x3.logx


Find the second order derivatives of the following : log(logx)


If y = `25^(log_5sin_x) + 16^(log_4cos_x)` then `("d"y)/("d"x)` = ______.


If log5 `((x^4 + "y"^4)/(x^4 - "y"^4))` = 2, show that `("dy")/("d"x) = (12x^3)/(13"y"^2)`


If y = 5x. x5. xx. 55 , find `("d"y)/("d"x)`


If x7 . y5 = (x + y)12, show that `("d"y)/("d"x) = y/x`


If y = `(sin x)^sin x` , then `"dy"/"dx"` = ?


If xy = ex-y, then `"dy"/"dx"` at x = 1 is ______.


If y = tan-1 `((1 - cos 3x)/(sin 3x))`, then `"dy"/"dx"` = ______.


`2^(cos^(2_x)`


`log [log(logx^5)]`


`lim_("x" -> -2) sqrt ("x"^2 + 5 - 3)/("x" + 2)` is equal to ____________.


Given f(x) = `log((1 + x)/(1 - x))` and g(x) = `(3x + x^3)/(1 + 3x^2)`, then fog(x) equals


If `log_10 ((x^2 - y^2)/(x^2 + y^2))` = 2, then `dy/dx` is equal to ______.


The derivative of x2x w.r.t. x is ______.


If y = `9^(log_3x)`, find `dy/dx`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×