Advertisements
Advertisements
प्रश्न
Find `(dy)/(dx) , if y = sin ^(-1) [2^(x +1 )/(1+4^x)]`
उत्तर
`y = sin^(-1) [(2.2^x)/(1 +(2^x)^2)]`
put 2x = tan θ
`∴ y = sin^(-1) [(2 tan theta ) /(1 + tan^2 theta)]`
= sin-1 [ sin 2θ ]
= 2θ
y = 2 tan-1 ( 2x )
Differentiating wrt x,
`(dy)/(dx) = 2/(1 +(2^x) )xx d/(dx) (2^x)`
`= 2/(1 + (2^x)^2) xx 2^x log 2 = (2 ^ (x+ 1))/(1 + 4^x) log 2 =" sin y log" 2`
APPEARS IN
संबंधित प्रश्न
If `y=log[x+sqrt(x^2+a^2)] ` show that `(x^2+a^2)(d^2y)/(dx^2)+xdy/dx=0`
Differentiate the function with respect to x.
xsin x + (sin x)cos x
Find `dy/dx`for the function given in the question:
xy + yx = 1
Find `dy/dx` for the function given in the question:
yx = xy
Find `dy/dx` for the function given in the question:
`xy = e^((x – y))`
Differentiate (x2 – 5x + 8) (x3 + 7x + 9) in three ways mentioned below:
- by using product rule
- by expanding the product to obtain a single polynomial.
- by logarithmic differentiation.
Do they all give the same answer?
Differentiate
log (1 + x2) w.r.t. tan-1 (x)
Find `"dy"/"dx"` , if `"y" = "x"^("e"^"x")`
If `"x"^(5/3) . "y"^(2/3) = ("x + y")^(7/3)` , the show that `"dy"/"dx" = "y"/"x"`
Solve the following differential equation: (3xy + y2) dx + (x2 + xy) dy = 0
If `(sin "x")^"y" = "x" + "y", "find" (d"y")/(d"x")`
If `log_5((x^4 + y^4)/(x^4 - y^4)) = 2, "show that""dy"/"dx" = (12x^3)/(13y^3)`.
If x = a cos3t, y = a sin3t, show that `"dy"/"dx" = -(y/x)^(1/3)`.
If y = log (log 2x), show that xy2 + y1 (1 + xy1) = 0.
If y = `25^(log_5sin_x) + 16^(log_4cos_x)` then `("d"y)/("d"x)` = ______.
If x7 . y5 = (x + y)12, show that `("d"y)/("d"x) = y/x`
The rate at which the metal cools in moving air is proportional to the difference of temperatures between the metal and air. If the air temperature is 290 K and the metal temperature drops from 370 K to 330 K in 1 O min, then the time required to drop the temperature upto 295 K.
lf y = `2^(x^(2^(x^(...∞))))`, then x(1 - y logx logy)`dy/dx` = ______
If y = `{f(x)}^{phi(x)}`, then `dy/dx` is ______
If xm . yn = (x + y)m+n, prove that `"dy"/"dx" = y/x`
`lim_("x" -> 0)(1 - "cos x")/"x"^2` is equal to ____________.
If y `= "e"^(3"x" + 7), "then the value" |("dy")/("dx")|_("x" = 0)` is ____________.
The derivative of log x with respect to `1/x` is ______.
Find `dy/dx`, if y = (log x)x.
Evaluate:
`int log x dx`
Find the derivative of `y = log x + 1/x` with respect to x.
If xy = yx, then find `dy/dx`