हिंदी

Differentiate the function with respect to x. xsin x + (sin x)cos x - Mathematics

Advertisements
Advertisements

प्रश्न

Differentiate the function with respect to x.

xsin x + (sin x)cos x

योग

उत्तर

Let, xsin x + (sin x)cos x

Again, let y = u + v

Differentiating both sides with respect to x,

`(dy)/dx = (du)/dx + (dv)/dx`    ...(1)

अब, u = xsin x

Taking logarithm of both sides,

log u = log xsin x = sin x log x

On differentiating both sides with respect to,

`1/u du/dx = sin x d/dx log x + log x d/dx sin x`

 = `sin x . 1/x + log x * cos x = cos x log x + sin x/x`

`therefore (du)/dx = u (cos x log x + (sin x)/x) = x^(sin x) (cos x log x + (sin x)/x)`   ....(2)

and v = (sin x)cos x

Taking logarithm of both sides,

log v = log (sin x)cos x = cos x log sin x

On differentiating both sides with respect to,

`1/v (dv)/dx = cos x  d/dx log sin x + log sin x  d/dx  cos x`

`= cos x * 1/(sin x) d/dx  sin x + log sin x * (- sin x)`

`= cos x * 1/sin x * cos x - sin x log sin x`

`= - sin x log sin x + cot x * cos x`

`therefore dv/dx = v [-sin x log sin x + cot x cos x]`

`= (sin x)^(cos x) [-sin x log sin x + cot x cos x]`          ....(3)

Putting the values ​​of `(du)/dx` and `(dv)/dx` from equations (2) and (3) in equation (1), we get,

`therefore dy/dx = (du)/dx + (dv)/dx`

`= x^(sin x) (cos x log x + sin x/x) + (sin x)^(cos x) [- sin x log sin x +cot x cos x]`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 5: Continuity and Differentiability - Exercise 5.5 [पृष्ठ १७८]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
अध्याय 5 Continuity and Differentiability
Exercise 5.5 | Q 9 | पृष्ठ १७८

वीडियो ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्न

 

If `y=log[x+sqrt(x^2+a^2)] ` show that `(x^2+a^2)(d^2y)/(dx^2)+xdy/dx=0`

 

Differentiate the function with respect to x. 

cos x . cos 2x . cos 3x


Differentiate the function with respect to x.

`sqrt(((x-1)(x-2))/((x-3)(x-4)(x-5)))`


Differentiate the function with respect to x.

(log x)x + xlog x


Differentiate the function with respect to x.

`(sin x)^x + sin^(-1) sqrtx` 


Differentiate the function with respect to x.

`x^(xcosx) + (x^2 + 1)/(x^2 -1)`


Differentiate the function with respect to x.

`(x cos x)^x + (x sin x)^(1/x)`


Find `dy/dx` for the function given in the question:

(cos x)y = (cos y)x


Find the derivative of the function given by f (x) = (1 + x) (1 + x2) (1 + x4) (1 + x8) and hence find f ′(1).


If `y = e^(acos^(-1)x)`, -1 <= x <= 1 show that `(1- x^2) (d^2y)/(dx^2) -x dy/dx - a^2y = 0`


if `x^m y^n = (x + y)^(m + n)`, prove that `(d^2y)/(dx^2)= 0`


If `y = sin^-1 x + cos^-1 x , "find"  dy/dx`


Find `(dy)/(dx) , if y = sin ^(-1) [2^(x +1 )/(1+4^x)]`


Find `dy/dx` if y = x+ 5x


Find `(d^2y)/(dx^2)` , if y = log x


Differentiate : log (1 + x2)  w.r.t. cot-1 x. 


Find `"dy"/"dx"` if y = xx + 5x


If `(sin "x")^"y" = "x" + "y", "find" (d"y")/(d"x")`


`"If"  y = sqrt(logx + sqrt(log x + sqrt(log x + ... ∞))), "then show that"  dy/dx = (1)/(x(2y - 1).`


If ey = yx, then show that `"dy"/"dx" = (logy)^2/(log y - 1)`.


If x = 2cos4(t + 3), y = 3sin4(t + 3), show that `"dy"/"dx" = -sqrt((3y)/(2x)`.


If y = log (log 2x), show that xy2 + y1 (1 + xy1) = 0.


Choose the correct option from the given alternatives :

If xy = yx, then `"dy"/"dx"` = ..........


If f(x) = logx (log x) then f'(e) is ______


If y = `25^(log_5sin_x) + 16^(log_4cos_x)` then `("d"y)/("d"x)` = ______.


If y = `log[sqrt((1 - cos((3x)/2))/(1 +cos((3x)/2)))]`, find `("d"y)/("d"x)`


Derivative of loge2 (logx) with respect to x is _______.


If `("f"(x))/(log (sec x)) "dx"` = log(log sec x) + c, then f(x) = ______.


If y = `("e"^"2x" sin x)/(x cos x), "then" "dy"/"dx" = ?`


`2^(cos^(2_x)`


`8^x/x^8`


If `"f" ("x") = sqrt (1 + "cos"^2 ("x"^2)), "then the value of f'" (sqrtpi/2)` is ____________.


If `f(x) = log [e^x ((3 - x)/(3 + x))^(1/3)]`,  then `f^'(1)` is equal to


If y = `(1 + 1/x)^x` then `(2sqrt(y_2(2) + 1/8))/((log  3/2 - 1/3))` is equal to ______.


Derivative of log (sec θ + tan θ) with respect to sec θ at θ = `π/4` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×