Advertisements
Advertisements
प्रश्न
Differentiate the function with respect to x.
xsin x + (sin x)cos x
उत्तर
Let, xsin x + (sin x)cos x
Again, let y = u + v
Differentiating both sides with respect to x,
`(dy)/dx = (du)/dx + (dv)/dx` ...(1)
अब, u = xsin x
Taking logarithm of both sides,
log u = log xsin x = sin x log x
On differentiating both sides with respect to,
`1/u du/dx = sin x d/dx log x + log x d/dx sin x`
= `sin x . 1/x + log x * cos x = cos x log x + sin x/x`
`therefore (du)/dx = u (cos x log x + (sin x)/x) = x^(sin x) (cos x log x + (sin x)/x)` ....(2)
and v = (sin x)cos x
Taking logarithm of both sides,
log v = log (sin x)cos x = cos x log sin x
On differentiating both sides with respect to,
`1/v (dv)/dx = cos x d/dx log sin x + log sin x d/dx cos x`
`= cos x * 1/(sin x) d/dx sin x + log sin x * (- sin x)`
`= cos x * 1/sin x * cos x - sin x log sin x`
`= - sin x log sin x + cot x * cos x`
`therefore dv/dx = v [-sin x log sin x + cot x cos x]`
`= (sin x)^(cos x) [-sin x log sin x + cot x cos x]` ....(3)
Putting the values of `(du)/dx` and `(dv)/dx` from equations (2) and (3) in equation (1), we get,
`therefore dy/dx = (du)/dx + (dv)/dx`
`= x^(sin x) (cos x log x + sin x/x) + (sin x)^(cos x) [- sin x log sin x +cot x cos x]`
APPEARS IN
संबंधित प्रश्न
If `y=log[x+sqrt(x^2+a^2)] ` show that `(x^2+a^2)(d^2y)/(dx^2)+xdy/dx=0`
Differentiate the function with respect to x.
cos x . cos 2x . cos 3x
Differentiate the function with respect to x.
`sqrt(((x-1)(x-2))/((x-3)(x-4)(x-5)))`
Differentiate the function with respect to x.
(log x)x + xlog x
Differentiate the function with respect to x.
`(sin x)^x + sin^(-1) sqrtx`
Differentiate the function with respect to x.
`x^(xcosx) + (x^2 + 1)/(x^2 -1)`
Differentiate the function with respect to x.
`(x cos x)^x + (x sin x)^(1/x)`
Find `dy/dx` for the function given in the question:
(cos x)y = (cos y)x
Find the derivative of the function given by f (x) = (1 + x) (1 + x2) (1 + x4) (1 + x8) and hence find f ′(1).
If `y = e^(acos^(-1)x)`, -1 <= x <= 1 show that `(1- x^2) (d^2y)/(dx^2) -x dy/dx - a^2y = 0`
if `x^m y^n = (x + y)^(m + n)`, prove that `(d^2y)/(dx^2)= 0`
If `y = sin^-1 x + cos^-1 x , "find" dy/dx`
Find `(dy)/(dx) , if y = sin ^(-1) [2^(x +1 )/(1+4^x)]`
Find `dy/dx` if y = xx + 5x
Find `(d^2y)/(dx^2)` , if y = log x
Differentiate : log (1 + x2) w.r.t. cot-1 x.
Find `"dy"/"dx"` if y = xx + 5x
If `(sin "x")^"y" = "x" + "y", "find" (d"y")/(d"x")`
`"If" y = sqrt(logx + sqrt(log x + sqrt(log x + ... ∞))), "then show that" dy/dx = (1)/(x(2y - 1).`
If ey = yx, then show that `"dy"/"dx" = (logy)^2/(log y - 1)`.
If x = 2cos4(t + 3), y = 3sin4(t + 3), show that `"dy"/"dx" = -sqrt((3y)/(2x)`.
If y = log (log 2x), show that xy2 + y1 (1 + xy1) = 0.
Choose the correct option from the given alternatives :
If xy = yx, then `"dy"/"dx"` = ..........
If f(x) = logx (log x) then f'(e) is ______
If y = `25^(log_5sin_x) + 16^(log_4cos_x)` then `("d"y)/("d"x)` = ______.
If y = `log[sqrt((1 - cos((3x)/2))/(1 +cos((3x)/2)))]`, find `("d"y)/("d"x)`
Derivative of loge2 (logx) with respect to x is _______.
If `("f"(x))/(log (sec x)) "dx"` = log(log sec x) + c, then f(x) = ______.
If y = `("e"^"2x" sin x)/(x cos x), "then" "dy"/"dx" = ?`
`2^(cos^(2_x)`
`8^x/x^8`
If `"f" ("x") = sqrt (1 + "cos"^2 ("x"^2)), "then the value of f'" (sqrtpi/2)` is ____________.
If `f(x) = log [e^x ((3 - x)/(3 + x))^(1/3)]`, then `f^'(1)` is equal to
If y = `(1 + 1/x)^x` then `(2sqrt(y_2(2) + 1/8))/((log 3/2 - 1/3))` is equal to ______.
Derivative of log (sec θ + tan θ) with respect to sec θ at θ = `π/4` is ______.