Advertisements
Advertisements
प्रश्न
Find `dy/dx` if y = xx + 5x
उत्तर
y = xx + 5x
let u= xx and v = 5x
∴ y = u + v
∴ `dy/dx = (du)/dx + (dv)/dx` (i)
Now u = xx
Taking logarithm on both the sides
log u = log xx
⇒ log u = x.log x
Differentiate w.r.t.x.
`1/u (du)/dx = x. 1/x + log x.1`
= 1 + log x
`therefore dy/dx = u( 1 + log x )`
`therefore du/dx = xx( 1 + log x )` (ii)
Now, v = 5x
`therefore dv/dx = 5x.log 5` (iii)
Substituting (ii) and (iii) in eqn (i)
`dy/dx = x^x ( 1 + log x ) + 5^x log 5`
APPEARS IN
संबंधित प्रश्न
Differentiate the function with respect to x.
xsin x + (sin x)cos x
Differentiate the function with respect to x.
`x^(xcosx) + (x^2 + 1)/(x^2 -1)`
if `x^m y^n = (x + y)^(m + n)`, prove that `(d^2y)/(dx^2)= 0`
Find `(d^2y)/(dx^2)` , if y = log x
Differentiate : log (1 + x2) w.r.t. cot-1 x.
If x = esin3t, y = ecos3t, then show that `dy/dx = -(ylogx)/(xlogy)`.
If x = a cos3t, y = a sin3t, show that `"dy"/"dx" = -(y/x)^(1/3)`.
If x = sin–1(et), y = `sqrt(1 - e^(2t)), "show that" sin x + dy/dx` = 0
Find the second order derivatives of the following : log(logx)
If y = log (log 2x), show that xy2 + y1 (1 + xy1) = 0.
If y = `log[sqrt((1 - cos((3x)/2))/(1 +cos((3x)/2)))]`, find `("d"y)/("d"x)`
If xy = ex-y, then `"dy"/"dx"` at x = 1 is ______.
`d/dx(x^{sinx})` = ______
If `("f"(x))/(log (sec x)) "dx"` = log(log sec x) + c, then f(x) = ______.
If y = `("e"^"2x" sin x)/(x cos x), "then" "dy"/"dx" = ?`
Find `dy/dx`, if y = (sin x)tan x – xlog x.
If y = `9^(log_3x)`, find `dy/dx`.
Find `dy/dx`, if y = (log x)x.