Advertisements
Advertisements
प्रश्न
Differentiate the function with respect to x.
`x^(xcosx) + (x^2 + 1)/(x^2 -1)`
उत्तर
Let, y = `x^(x cos x) + (x^2 + 1)/(x^2 - 1)`
Again, let y = u + v
Differentiating both sides with respect to x,
`dy/dx = (du)/dx + (dv)/dx` ...(1)
Now, u = `x^(x cos x)`
Taking logarithm of both sides,
`log u = log x^(x cos x) = x cos x log x`
Differentiating both sides with respect to x,
`1/u (du)/dx = x cos x d/dx log x + log x d/dx x cos x`
`= x cos x * 1/x + log x [x d/dx cos x + cos x d/dx (x)]`
= cos x + log x [x (- sin x) + cos x]
= cos x + x (- sin x) · log x + cos x · log x
`therefore (du)/dx = u [cos x log x - x sin x log x + cos x]`
= `x^(x cos x)` [cos x log x - x sin x log x + cos x] ....(2)
`v = (x^2 + 1)/(x^2 - 1)`
Differentiating both sides with respect to x,
`dv/dx = ((x^2 - 1) d/dx (x^2 + 1) - (x^2 + 1) d/dx(x^2 - 1))/((x^2 - 1)^2)`
`= ((x^2 - 1)(2 x) - (x^2 + 1) (2 x))/((x^2 - 1)^2)`
`= (2 x [x^2 - 1 - x^2 - 1])/((x^2 - 1)^2)`
`= (-4x)/((x^2 - 1)^2)`
Putting the values of `(du)/dx` and `(dv)/dx` from equation (2) and (3) in equation (1),
`therefore dy/dx = (du)/dx + (dv)/dx`
`= x^(x cos x) [cos x log x - x sin x log x + cos x] - (4x)/(x^2 - 1)^2`
APPEARS IN
संबंधित प्रश्न
If `y=log[x+sqrt(x^2+a^2)] ` show that `(x^2+a^2)(d^2y)/(dx^2)+xdy/dx=0`
Differentiate the function with respect to x.
`x^x - 2^(sin x)`
Differentiate the function with respect to x.
(x + 3)2 . (x + 4)3 . (x + 5)4
Differentiate the function with respect to x.
(log x)x + xlog x
Find `dy/dx` for the function given in the question:
`xy = e^((x – y))`
If cos y = x cos (a + y), with cos a ≠ ± 1, prove that `dy/dx = cos^2(a+y)/(sin a)`
If x = a (cos t + t sin t) and y = a (sin t – t cos t), find `(d^2y)/dx^2`
Find `(dy)/(dx) , if y = sin ^(-1) [2^(x +1 )/(1+4^x)]`
Evaluate
`int 1/(16 - 9x^2) dx`
Differentiate
log (1 + x2) w.r.t. tan-1 (x)
Find `"dy"/"dx"` if y = xx + 5x
Solve the following differential equation: (3xy + y2) dx + (x2 + xy) dy = 0
If `log_5((x^4 + y^4)/(x^4 - y^4)) = 2, "show that""dy"/"dx" = (12x^3)/(13y^3)`.
If x = `asqrt(secθ - tanθ), y = asqrt(secθ + tanθ), "then show that" "dy"/"dx" = -y/x`.
If x = a cos3t, y = a sin3t, show that `"dy"/"dx" = -(y/x)^(1/3)`.
If x = 2cos4(t + 3), y = 3sin4(t + 3), show that `"dy"/"dx" = -sqrt((3y)/(2x)`.
If x = sin–1(et), y = `sqrt(1 - e^(2t)), "show that" sin x + dy/dx` = 0
Find the second order derivatives of the following : log(logx)
Find the nth derivative of the following : log (ax + b)
Find the nth derivative of the following : log (2x + 3)
Choose the correct option from the given alternatives :
If xy = yx, then `"dy"/"dx"` = ..........
If f(x) = logx (log x) then f'(e) is ______
If y = `log[4^(2x)((x^2 + 5)/sqrt(2x^3 - 4))^(3/2)]`, find `("d"y)/("d"x)`
If y = 5x. x5. xx. 55 , find `("d"y)/("d"x)`
If y = `(sin x)^sin x` , then `"dy"/"dx"` = ?
If xy = ex-y, then `"dy"/"dx"` at x = 1 is ______.
If y = tan-1 `((1 - cos 3x)/(sin 3x))`, then `"dy"/"dx"` = ______.
`d/dx(x^{sinx})` = ______
If `("f"(x))/(log (sec x)) "dx"` = log(log sec x) + c, then f(x) = ______.
`8^x/x^8`
`lim_("x" -> -2) sqrt ("x"^2 + 5 - 3)/("x" + 2)` is equal to ____________.
If `"y" = "e"^(1/2log (1 + "tan"^2"x")), "then" "dy"/"dx"` is equal to ____________.
If `log_10 ((x^3 - y^3)/(x^3 + y^3))` = 2 then `dy/dx` = ______.
The derivative of x2x w.r.t. x is ______.