Advertisements
Advertisements
प्रश्न
If y = 5x. x5. xx. 55 , find `("d"y)/("d"x)`
उत्तर
y = 5x. x5. xx. 55
Taking log on both sides, we get
log y = log(5x. x5. xx. 55)
= log 5x + log x5 + log xx + log 55
∴ log y = xlog 5 + 5 log x + xlog x + 5log 5
Differentiating w.r.t. x, we get
`"d"/("d"x)(log y) = "d"/("d"x)(x log 5 + 5 log x + x log x + 5 log 5)`
∴ `1/y*("d"y)/("d"x) = log5*"d"/("d"x)(x) + 5*"d"/("d"x)(log x) + x*"d"/("d"x)(log x) + logx* "d"/("d"x)(x) + "d"/("d"x)(5log5)`
= `log5*1 + 5*1/x + x*1/x + logx*1 + 0`
∴ `("d"y)/("d"x) = y(log5 + 5/x + 1 + logx)`
∴ `("d"y)/("d"x) = 5^x* x^5* x^x* 5^5 (log5 + 5/x + 1 + logx)`
APPEARS IN
संबंधित प्रश्न
Differentiate the following function with respect to x: `(log x)^x+x^(logx)`
if xx+xy+yx=ab, then find `dy/dx`.
Differentiate the function with respect to x.
cos x . cos 2x . cos 3x
Differentiate the function with respect to x.
`(log x)^(cos x)`
Differentiate the function with respect to x.
xsin x + (sin x)cos x
Differentiate the function with respect to x.
`(x cos x)^x + (x sin x)^(1/x)`
Find `dy/dx` for the function given in the question:
yx = xy
Find `dy/dx` for the function given in the question:
(cos x)y = (cos y)x
If cos y = x cos (a + y), with cos a ≠ ± 1, prove that `dy/dx = cos^2(a+y)/(sin a)`
If x = a (cos t + t sin t) and y = a (sin t – t cos t), find `(d^2y)/dx^2`
If y = (log x)x + xlog x, find `"dy"/"dx".`
If log (x + y) = log(xy) + p, where p is a constant, then prove that `"dy"/"dx" = (-y^2)/(x^2)`.
If x = a cos3t, y = a sin3t, show that `"dy"/"dx" = -(y/x)^(1/3)`.
If x = 2cos4(t + 3), y = 3sin4(t + 3), show that `"dy"/"dx" = -sqrt((3y)/(2x)`.
Find the second order derivatives of the following : log(logx)
Find the nth derivative of the following : log (2x + 3)
Choose the correct option from the given alternatives :
If xy = yx, then `"dy"/"dx"` = ..........
If y = log [cos(x5)] then find `("d"y)/("d"x)`
If y = `log[4^(2x)((x^2 + 5)/sqrt(2x^3 - 4))^(3/2)]`, find `("d"y)/("d"x)`
Derivative of loge2 (logx) with respect to x is _______.
`"d"/"dx" [(cos x)^(log x)]` = ______.
`8^x/x^8`
If xm . yn = (x + y)m+n, prove that `"dy"/"dx" = y/x`
If y = `log ((1 - x^2)/(1 + x^2))`, then `"dy"/"dx"` is equal to ______.
`lim_("x" -> 0)(1 - "cos x")/"x"^2` is equal to ____________.
`lim_("x" -> -2) sqrt ("x"^2 + 5 - 3)/("x" + 2)` is equal to ____________.
If `"f" ("x") = sqrt (1 + "cos"^2 ("x"^2)), "then the value of f'" (sqrtpi/2)` is ____________.
If `f(x) = log [e^x ((3 - x)/(3 + x))^(1/3)]`, then `f^'(1)` is equal to
If `log_10 ((x^2 - y^2)/(x^2 + y^2))` = 2, then `dy/dx` is equal to ______.
The derivative of log x with respect to `1/x` is ______.
Find `dy/dx`, if y = (log x)x.
Evaluate:
`int log x dx`