Advertisements
Advertisements
प्रश्न
If y = (log x)x + xlog x, find `"dy"/"dx".`
उत्तर
Let y =(log x)x + xlog x
Also, let u =(log x)x and v = xlog x
∴ y = u + v
`⇒"dy"/"dx" = "du"/"dx"+"dv"/"dx"` ........(1)
u = (logx)x
⇒ log u = log[(log x)x]
⇒ log u = x log(log x)
Differentiating both sides with respect to x, we obtain
`1/"u" "du"/"dx" ="d"/"dx"("x") xx log(log"x")+"x"."d"/"dx"[log(log"x")]`
`⇒"du"/"dx" = "u"[1xxlog(log"x")+"x". 1/log"x"."d"/"dx"(log"x")]`
`⇒"du"/"dx"=(log"x")^"x"[log(log"x")+"x"/(log"x"). 1/"x"]`
`⇒"du"/"dx"=(log"x")^"x"[log(log"x")+1/(log"x")]`
`⇒"du"/"dx"=(log"x")^"x"[(log(log"x").log"x"+1)/log"x"]`
`⇒"du"/"dx"=(log"x")^("x"-1)[1+log"x".log(log"x")]` .....(2)
v = xlogx
⇒ log v = log(xlogx)
⇒ log v = log x log x = (log x)2
Differentiating both sides with respect to x, we obtain
`1/"v"."dv"/"dx"="d"/"dx"[(log"x")^2]`
`⇒ 1/"v"."dv"/"dx"=2(log"x")."d"/"dx"(log"x")`
`⇒"dv"/"dx" = 2"v"(log"x"). 1/"x"`
`⇒"dv"/"dx" = 2"x"^(log"x") log"x"/"x"`
`⇒"dv"/"dx"=2"x"^(log"x"-1) . log"x"` ......(3)
Therefore, from (1), (2), and (3), we obtain
`"dy"/"dx" = (log"x")^("x"-1)[1+log"x".log(log"x")]+2"x"^(log"x"-1) .log"x"`
APPEARS IN
संबंधित प्रश्न
If `y=log[x+sqrt(x^2+a^2)] ` show that `(x^2+a^2)(d^2y)/(dx^2)+xdy/dx=0`
Differentiate the function with respect to x.
`x^x - 2^(sin x)`
Differentiate the function with respect to x.
`(sin x)^x + sin^(-1) sqrtx`
Find `dy/dx`for the function given in the question:
xy + yx = 1
Find `dy/dx` for the function given in the question:
yx = xy
Differentiate w.r.t. x the function:
xx + xa + ax + aa, for some fixed a > 0 and x > 0
if `x^m y^n = (x + y)^(m + n)`, prove that `(d^2y)/(dx^2)= 0`
If `y = sin^-1 x + cos^-1 x , "find" dy/dx`
Evaluate
`int 1/(16 - 9x^2) dx`
Find `(d^2y)/(dx^2)` , if y = log x
Differentiate : log (1 + x2) w.r.t. cot-1 x.
Find `"dy"/"dx"` if y = xx + 5x
Solve the following differential equation: (3xy + y2) dx + (x2 + xy) dy = 0
If x = a cos3t, y = a sin3t, show that `"dy"/"dx" = -(y/x)^(1/3)`.
Find the second order derivatives of the following : log(logx)
Find the nth derivative of the following : log (ax + b)
Choose the correct option from the given alternatives :
If xy = yx, then `"dy"/"dx"` = ..........
If y = log [cos(x5)] then find `("d"y)/("d"x)`
lf y = `2^(x^(2^(x^(...∞))))`, then x(1 - y logx logy)`dy/dx` = ______
`d/dx(x^{sinx})` = ______
`log (x + sqrt(x^2 + "a"))`
`lim_("x" -> -2) sqrt ("x"^2 + 5 - 3)/("x" + 2)` is equal to ____________.
If y `= "e"^(3"x" + 7), "then the value" |("dy")/("dx")|_("x" = 0)` is ____________.
If y = `(1 + 1/x)^x` then `(2sqrt(y_2(2) + 1/8))/((log 3/2 - 1/3))` is equal to ______.
Find the derivative of `y = log x + 1/x` with respect to x.
If xy = yx, then find `dy/dx`