हिंदी

If y = (log x)x + xlog x, find "dy"/"dx". - Mathematics

Advertisements
Advertisements

प्रश्न

If y = (log x)x + xlog x, find `"dy"/"dx".`

योग

उत्तर

Let y =(log x)x + xlog x

Also, let u =(log x)x and  v = xlog x

∴ y = u + v

`⇒"dy"/"dx" = "du"/"dx"+"dv"/"dx"` ........(1)

u = (logx)x

⇒ log u = log[(log x)x]

⇒ log u = x log(log x)

Differentiating both sides with respect to x, we obtain

`1/"u" "du"/"dx" ="d"/"dx"("x") xx log(log"x")+"x"."d"/"dx"[log(log"x")]`

`⇒"du"/"dx" = "u"[1xxlog(log"x")+"x". 1/log"x"."d"/"dx"(log"x")]`

`⇒"du"/"dx"=(log"x")^"x"[log(log"x")+"x"/(log"x"). 1/"x"]`

`⇒"du"/"dx"=(log"x")^"x"[log(log"x")+1/(log"x")]`

`⇒"du"/"dx"=(log"x")^"x"[(log(log"x").log"x"+1)/log"x"]`

`⇒"du"/"dx"=(log"x")^("x"-1)[1+log"x".log(log"x")]` .....(2)

v = xlogx

⇒ log v = log(xlogx)

⇒ log v = log  x log x = (log x)2

Differentiating both sides with respect to x, we obtain

`1/"v"."dv"/"dx"="d"/"dx"[(log"x")^2]`

`⇒ 1/"v"."dv"/"dx"=2(log"x")."d"/"dx"(log"x")`

`⇒"dv"/"dx" = 2"v"(log"x"). 1/"x"`

`⇒"dv"/"dx" = 2"x"^(log"x") log"x"/"x"`

`⇒"dv"/"dx"=2"x"^(log"x"-1) . log"x"` ......(3)

Therefore, from (1), (2), and (3), we obtain

`"dy"/"dx" = (log"x")^("x"-1)[1+log"x".log(log"x")]+2"x"^(log"x"-1) .log"x"`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2018-2019 (March) 65/4/3

वीडियो ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्न

 

If `y=log[x+sqrt(x^2+a^2)] ` show that `(x^2+a^2)(d^2y)/(dx^2)+xdy/dx=0`

 

Differentiate the function with respect to x.

`x^x - 2^(sin x)`


Differentiate the function with respect to x.

`(sin x)^x + sin^(-1) sqrtx` 


Find `dy/dx`for the function given in the question:

xy + yx = 1


Find `dy/dx` for the function given in the question:

yx = xy


Differentiate w.r.t. x the function:

xx + xa + ax + aa, for some fixed a > 0 and x > 0


if `x^m y^n = (x + y)^(m + n)`, prove that `(d^2y)/(dx^2)= 0`


If `y = sin^-1 x + cos^-1 x , "find"  dy/dx`


Evaluate 
`int  1/(16 - 9x^2) dx`


Find `(d^2y)/(dx^2)` , if y = log x


Differentiate : log (1 + x2)  w.r.t. cot-1 x. 


Find `"dy"/"dx"` if y = xx + 5x


 Solve the following differential equation: (3xy + y2) dx + (x2 + xy) dy = 0 


If x = a cos3t, y = a sin3t, show that `"dy"/"dx" = -(y/x)^(1/3)`.


Find the second order derivatives of the following : log(logx)


Find the nth derivative of the following : log (ax + b)


Choose the correct option from the given alternatives :

If xy = yx, then `"dy"/"dx"` = ..........


If y = log [cos(x5)] then find `("d"y)/("d"x)`


lf y = `2^(x^(2^(x^(...∞))))`, then x(1 - y logx logy)`dy/dx` = ______  


`d/dx(x^{sinx})` = ______ 


`log (x + sqrt(x^2 + "a"))`


`lim_("x" -> -2) sqrt ("x"^2 + 5 - 3)/("x" + 2)` is equal to ____________.


If y `= "e"^(3"x" + 7), "then the value" |("dy")/("dx")|_("x" = 0)` is ____________.


If y = `(1 + 1/x)^x` then `(2sqrt(y_2(2) + 1/8))/((log  3/2 - 1/3))` is equal to ______.


Find the derivative of `y = log x + 1/x` with respect to x.


If xy = yx, then find `dy/dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×