हिंदी

Find dydxfor the function given in the question: xy + yx = 1 - Mathematics

Advertisements
Advertisements

प्रश्न

Find `dy/dx`for the function given in the question:

xy + yx = 1

योग

उत्तर

Given, ∵ xy + yx = 1

Let, u = xy, v = yx    ∵ u + v = 1

Differentiating both sides with respect to x,

`1/u (du)/dx = d/dx y log x`

`= y d/dx log x +log x d/dx (y)`

`= y * 1/x + log x * dy/dx = y/x + log x dy/dx`

`therefore (du)/dx = u [y/x + log x dy/dx]`

`= x^y [y/x + log x dy/dx]`   ...(2)

Now, v = yx

Taking logarithm of both sides, log, log v = log yx = x log y

Differentiating both sides with respect to ,

`1/v (dv)/dx = d/dx x log y`

`= x d/dx log y +log y d/dx (x)`

`= x * 1/y + log yxx 1 = x/y dy/dx + log y`

`therefore (dv)/dx = v [x/y dy/dx + log y]`

`= y^x [x/y dy/dx + log y]`       ...(3)

From equation (2) and (3), putting the values ​​of `(du)/dx` and `(dv)/dx` in equation (1),

`therefore x^y [(log x)  dy/dx + y/x] + y^x [log y + x/y  dy/dx] = 0`

`therefore (x^y log x + xy^x/y) dy/dx + x^y * y/x + y^x log y = 0`

`therefore (x^y log x + x y^(x - 1)) dy/dx + yx^(y - 1) + y^x log y = 0`

`therefore dy/dx = (yx^(y - 1) + y^x log y)/(x^y log x + x y^(x - 1))`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 5: Continuity and Differentiability - Exercise 5.5 [पृष्ठ १७८]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
अध्याय 5 Continuity and Differentiability
Exercise 5.5 | Q 12 | पृष्ठ १७८

वीडियो ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्न

Differentiate the function with respect to x.

(x + 3)2 . (x + 4)3 . (x + 5)4


Differentiate the function with respect to x.

`(x + 1/x)^x + x^((1+1/x))`


Differentiate the function with respect to x.

`x^(xcosx) + (x^2 + 1)/(x^2 -1)`


Find `dy/dx` for the function given in the question:

(cos x)y = (cos y)x


Find the derivative of the function given by f (x) = (1 + x) (1 + x2) (1 + x4) (1 + x8) and hence find f ′(1).


Differentiate (x2 – 5x + 8) (x3 + 7x + 9) in three ways mentioned below:

  1. by using product rule
  2. by expanding the product to obtain a single polynomial.
  3. by logarithmic differentiation.

Do they all give the same answer?


If cos y = x cos (a + y), with cos a ≠ ± 1, prove that `dy/dx = cos^2(a+y)/(sin a)`


If x = a (cos t + t sin t) and y = a (sin t – t cos t), find `(d^2y)/dx^2`


if `x^m y^n = (x + y)^(m + n)`, prove that `(d^2y)/(dx^2)= 0`


Find `(dy)/(dx) , if y = sin ^(-1) [2^(x +1 )/(1+4^x)]`


Evaluate 
`int  1/(16 - 9x^2) dx`


Find `(d^2y)/(dx^2)` , if y = log x


If `"x"^(5/3) . "y"^(2/3) = ("x + y")^(7/3)` , the show that `"dy"/"dx" = "y"/"x"`


If log (x + y) = log(xy) + p, where p is a constant, then prove that `"dy"/"dx" = (-y^2)/(x^2)`.


If `log_10((x^3 - y^3)/(x^3 + y^3)) = 2, "show that" "dy"/"dx" = -(99x^2)/(101y^2)`


`"If"  y = sqrt(logx + sqrt(log x + sqrt(log x + ... ∞))), "then show that"  dy/dx = (1)/(x(2y - 1).`


If x = esin3t, y = ecos3t, then show that `dy/dx = -(ylogx)/(xlogy)`.


Find the nth derivative of the following : log (2x + 3)


If y = `25^(log_5sin_x) + 16^(log_4cos_x)` then `("d"y)/("d"x)` = ______.


If y = log [cos(x5)] then find `("d"y)/("d"x)`


If y = `log[sqrt((1 - cos((3x)/2))/(1 +cos((3x)/2)))]`, find `("d"y)/("d"x)`


If y = `log[4^(2x)((x^2 + 5)/sqrt(2x^3 - 4))^(3/2)]`, find `("d"y)/("d"x)`


If y = `(sin x)^sin x` , then `"dy"/"dx"` = ?


`"d"/"dx" [(cos x)^(log x)]` = ______.


`8^x/x^8`


If y `= "e"^(3"x" + 7), "then the value" |("dy")/("dx")|_("x" = 0)` is ____________.


If `f(x) = log [e^x ((3 - x)/(3 + x))^(1/3)]`,  then `f^'(1)` is equal to


Derivative of log (sec θ + tan θ) with respect to sec θ at θ = `π/4` is ______.


If `log_10 ((x^2 - y^2)/(x^2 + y^2))` = 2, then `dy/dx` is equal to ______.


If y = `log(x + sqrt(x^2 + 4))`, show that `dy/dx = 1/sqrt(x^2 + 4)`


The derivative of log x with respect to `1/x` is ______.


Evaluate:

`int log x dx`


Find the derivative of `y = log x + 1/x` with respect to x.


If xy = yx, then find `dy/dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×