Advertisements
Advertisements
प्रश्न
Differentiate the function with respect to x.
(x + 3)2 . (x + 4)3 . (x + 5)4
उत्तर
Let, y = (x + 3)2 · (x + 4)3 · (x + 5)4
Taking logarithm of both sides,
log y = log [(x + 3)2 · (x + 4)3 · (x + 5)4]
= log (x + 3)2 + log (x + 4)3 + log (x + 5)4 ...[∵ log mn = log m + log n]
= 2 log (x + 3) + 3 log (x + 4) + 4 log (x + 5) ...[∵ log mn = n log m]
Differentiating both sides with respect to x,
`1/y dy/dx = 2 d/dx log (x + 3) + 3 d/dx log (x + 4) + 4 d/dx log (x + 5)`
`1/y dy/dx = 2 * 1/(x + 3) d/dx (x + 3) + 3 xx 1/(x+ 4) d/dx (x + 4) + 4 xx 1/(x + 5) d/dx (x + 5)`
`1/y dy/dx = (2(1 + 0))/(x + 3) + (3(1 + 0))/("x" + 4) + (4(1 + 0))/(x + 5)`
या `dy/dx = y [2/(x + 3) + 3/(x + 4) + 4/(x + 5)]`
`= y [(2 (x + 4) (x + 5) + 3 (x + 5) + 4 (x + 3) (x + 4))/((x + 3) (x + 4) (x + 5))]`
`= (x + 3)^2 (x + 4)^3 (x + 5)^4 xx [(2 (x^2 + 9x + 20) + 3(x^2 + 8x + 15) + 4 (x^ + 7x + 12))/((x + 3) (x + 4) (x + 5))]`
`⇒ dy/dx= (x + 3) (x + 4)^2 (x + 5)^3 [9x^2 + 70x + 133]`
APPEARS IN
संबंधित प्रश्न
Differentiate the function with respect to x.
`(x cos x)^x + (x sin x)^(1/x)`
Find `dy/dx` for the function given in the question:
(cos x)y = (cos y)x
Find the derivative of the function given by f (x) = (1 + x) (1 + x2) (1 + x4) (1 + x8) and hence find f ′(1).
Differentiate (x2 – 5x + 8) (x3 + 7x + 9) in three ways mentioned below:
- by using product rule
- by expanding the product to obtain a single polynomial.
- by logarithmic differentiation.
Do they all give the same answer?
If u, v and w are functions of x, then show that `d/dx(u.v.w) = (du)/dx v.w+u. (dv)/dx.w + u.v. (dw)/dx` in two ways-first by repeated application of product rule, second by logarithmic differentiation.
If x = a (cos t + t sin t) and y = a (sin t – t cos t), find `(d^2y)/dx^2`
if `x^m y^n = (x + y)^(m + n)`, prove that `(d^2y)/(dx^2)= 0`
If `y = sin^-1 x + cos^-1 x , "find" dy/dx`
If ey ( x +1) = 1, then show that `(d^2 y)/(dx^2) = ((dy)/(dx))^2 .`
Differentiate : log (1 + x2) w.r.t. cot-1 x.
If `"x"^(5/3) . "y"^(2/3) = ("x + y")^(7/3)` , the show that `"dy"/"dx" = "y"/"x"`
Solve the following differential equation: (3xy + y2) dx + (x2 + xy) dy = 0
If xy = ex–y, then show that `"dy"/"dx" = logx/(1 + logx)^2`.
If x = 2cos4(t + 3), y = 3sin4(t + 3), show that `"dy"/"dx" = -sqrt((3y)/(2x)`.
If x = log(1 + t2), y = t – tan–1t,show that `"dy"/"dx" = sqrt(e^x - 1)/(2)`.
If x = `(2bt)/(1 + t^2), y = a((1 - t^2)/(1 + t^2)), "show that" "dx"/"dy" = -(b^2y)/(a^2x)`.
Find the second order derivatives of the following : x3.logx
If y = `log(x + sqrt(x^2 + a^2))^m`, show that `(x^2 + a^2)(d^2y)/(dx^2) + x "d"/"dx"` = 0.
If y = log (log 2x), show that xy2 + y1 (1 + xy1) = 0.
If y = log [cos(x5)] then find `("d"y)/("d"x)`
If y = `log[4^(2x)((x^2 + 5)/sqrt(2x^3 - 4))^(3/2)]`, find `("d"y)/("d"x)`
If log5 `((x^4 + "y"^4)/(x^4 - "y"^4))` = 2, show that `("dy")/("d"x) = (12x^3)/(13"y"^2)`
The rate at which the metal cools in moving air is proportional to the difference of temperatures between the metal and air. If the air temperature is 290 K and the metal temperature drops from 370 K to 330 K in 1 O min, then the time required to drop the temperature upto 295 K.
If y = `{f(x)}^{phi(x)}`, then `dy/dx` is ______
If y = tan-1 `((1 - cos 3x)/(sin 3x))`, then `"dy"/"dx"` = ______.
`d/dx(x^{sinx})` = ______
If xm . yn = (x + y)m+n, prove that `"dy"/"dx" = y/x`
If y `= "e"^(3"x" + 7), "then the value" |("dy")/("dx")|_("x" = 0)` is ____________.
Given f(x) = `log((1 + x)/(1 - x))` and g(x) = `(3x + x^3)/(1 + 3x^2)`, then fog(x) equals
If `log_10 ((x^3 - y^3)/(x^3 + y^3))` = 2 then `dy/dx` = ______.
If y = `9^(log_3x)`, find `dy/dx`.
Find `dy/dx`, if y = (log x)x.
Find the derivative of `y = log x + 1/x` with respect to x.