Advertisements
Advertisements
प्रश्न
If y = `log(x + sqrt(x^2 + a^2))^m`, show that `(x^2 + a^2)(d^2y)/(dx^2) + x "d"/"dx"` = 0.
उत्तर
y = `log(x + sqrt(x^2 + a^2))^m`
= `mlog(x + sqrt(x^2 + a^2))`
∴ `"dy"/"dx" = m"d"/"dx"[log(x + sqrt(x^2 + a^2))]`
= `m xx (1)/(x + sqrt(x^2 + a^2))."d"/"dx"(x + sqrt(x^2 + a^2))`
= `m/(x + sqrt(x^2 + a^2)) xx [1 + (1)/(2sqrt(x^2 + a^2))."d"/"dx"(x^2 + a^2)]`
= `m/(x + sqrt(x^2 + a^2)) xx [1 + (1)/(2sqrt(x^2 + a^2)).(2x + 0)]`
= `m/(x + sqrt(x^2 + a^2)) xx (sqrt(x^2 + a^2) + x)/(sqrt(x^2 + a^2)`
∴ `"dy"/"dx" = m/sqrt(x^2 + a^2)`
∴ `sqrt(x^2 + a^2)"dy"/"dx"` = m
∴ `(x^2 + a^2)(dy/dx)^2` = m2
Differentiating both sides w.r.t. x, we get
`(x^2 + a^2)."d"/"dx"(dy/dx)^2 + (dy/dx)^2."d"/"dx"(x^2 + a^2) = "d"/"dx"(m^2)`
∴ `(x^2 + a^2) xx 2"dy"/"dx"."d"/"dx"(dy/dx) + (dy/dx)^2 xx (2x + 0)` = 0
∴ `(x^2 + a^2) . 2"dy"/"dx"(d^2y)/(dx^2) + 2x (dy/dx)^2` = 0
Cancelling `2"dy"/"dx"` throughtout, we get
`(x^2 + a^2)(d^2y)/(dx^2) + x"dy"/"dx"` = 0.
संबंधित प्रश्न
Differentiate the function with respect to x.
`sqrt(((x-1)(x-2))/((x-3)(x-4)(x-5)))`
Differentiate the function with respect to x.
`(log x)^(cos x)`
Differentiate the function with respect to x.
`(x + 1/x)^x + x^((1+1/x))`
Differentiate the function with respect to x.
`(sin x)^x + sin^(-1) sqrtx`
Find `dy/dx` for the function given in the question:
(cos x)y = (cos y)x
Find the derivative of the function given by f (x) = (1 + x) (1 + x2) (1 + x4) (1 + x8) and hence find f ′(1).
Differentiate (x2 – 5x + 8) (x3 + 7x + 9) in three ways mentioned below:
- by using product rule
- by expanding the product to obtain a single polynomial.
- by logarithmic differentiation.
Do they all give the same answer?
Differentiate w.r.t. x the function:
xx + xa + ax + aa, for some fixed a > 0 and x > 0
If cos y = x cos (a + y), with cos a ≠ ± 1, prove that `dy/dx = cos^2(a+y)/(sin a)`
If x = a (cos t + t sin t) and y = a (sin t – t cos t), find `(d^2y)/dx^2`
If `y = e^(acos^(-1)x)`, -1 <= x <= 1 show that `(1- x^2) (d^2y)/(dx^2) -x dy/dx - a^2y = 0`
If `y = sin^-1 x + cos^-1 x , "find" dy/dx`
Evaluate
`int 1/(16 - 9x^2) dx`
Find `(d^2y)/(dx^2)` , if y = log x
If `(sin "x")^"y" = "x" + "y", "find" (d"y")/(d"x")`
If xy = ex–y, then show that `"dy"/"dx" = logx/(1 + logx)^2`.
If y = `x^(x^(x^(.^(.^.∞))`, then show that `"dy"/"dx" = y^2/(x(1 - logy).`.
If ey = yx, then show that `"dy"/"dx" = (logy)^2/(log y - 1)`.
If x = esin3t, y = ecos3t, then show that `dy/dx = -(ylogx)/(xlogy)`.
If x = log(1 + t2), y = t – tan–1t,show that `"dy"/"dx" = sqrt(e^x - 1)/(2)`.
If x = sin–1(et), y = `sqrt(1 - e^(2t)), "show that" sin x + dy/dx` = 0
If y = log (log 2x), show that xy2 + y1 (1 + xy1) = 0.
If y = `25^(log_5sin_x) + 16^(log_4cos_x)` then `("d"y)/("d"x)` = ______.
If x7 . y5 = (x + y)12, show that `("d"y)/("d"x) = y/x`
lf y = `2^(x^(2^(x^(...∞))))`, then x(1 - y logx logy)`dy/dx` = ______
If xy = ex-y, then `"dy"/"dx"` at x = 1 is ______.
If y = tan-1 `((1 - cos 3x)/(sin 3x))`, then `"dy"/"dx"` = ______.
`"d"/"dx" [(cos x)^(log x)]` = ______.
Derivative of `log_6`x with respect 6x to is ______
`log (x + sqrt(x^2 + "a"))`
`log [log(logx^5)]`
If y = `log ((1 - x^2)/(1 + x^2))`, then `"dy"/"dx"` is equal to ______.
`lim_("x" -> 0)(1 - "cos x")/"x"^2` is equal to ____________.
`lim_("x" -> -2) sqrt ("x"^2 + 5 - 3)/("x" + 2)` is equal to ____________.
If `"f" ("x") = sqrt (1 + "cos"^2 ("x"^2)), "then the value of f'" (sqrtpi/2)` is ____________.
Given f(x) = `log((1 + x)/(1 - x))` and g(x) = `(3x + x^3)/(1 + 3x^2)`, then fog(x) equals
If y = `x^(x^2)`, then `dy/dx` is equal to ______.
If `log_10 ((x^3 - y^3)/(x^3 + y^3))` = 2 then `dy/dx` = ______.
If `log_10 ((x^2 - y^2)/(x^2 + y^2))` = 2, then `dy/dx` is equal to ______.
The derivative of x2x w.r.t. x is ______.
Evaluate:
`int log x dx`