हिंदी

If y = log(x+x2+a2)m, show that ddx(x2+a2)d2ydx2+xddx = 0. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

If y = `log(x + sqrt(x^2 + a^2))^m`, show that `(x^2 + a^2)(d^2y)/(dx^2) + x "d"/"dx"` = 0.

योग

उत्तर

y = `log(x + sqrt(x^2 + a^2))^m`

= `mlog(x + sqrt(x^2 + a^2))`

∴ `"dy"/"dx" = m"d"/"dx"[log(x + sqrt(x^2 + a^2))]`

= `m xx (1)/(x + sqrt(x^2 + a^2))."d"/"dx"(x + sqrt(x^2 + a^2))`

= `m/(x + sqrt(x^2 + a^2)) xx [1 + (1)/(2sqrt(x^2 + a^2))."d"/"dx"(x^2 + a^2)]`

= `m/(x + sqrt(x^2 + a^2)) xx [1 + (1)/(2sqrt(x^2 + a^2)).(2x + 0)]`

= `m/(x + sqrt(x^2 + a^2)) xx (sqrt(x^2 + a^2) + x)/(sqrt(x^2 + a^2)`

∴ `"dy"/"dx" = m/sqrt(x^2 + a^2)`

∴ `sqrt(x^2 + a^2)"dy"/"dx"` = m

∴ `(x^2 + a^2)(dy/dx)^2` = m2

Differentiating both sides w.r.t. x, we get

`(x^2 + a^2)."d"/"dx"(dy/dx)^2 + (dy/dx)^2."d"/"dx"(x^2 + a^2) = "d"/"dx"(m^2)`

∴ `(x^2 + a^2) xx 2"dy"/"dx"."d"/"dx"(dy/dx) + (dy/dx)^2 xx (2x + 0)` = 0

∴ `(x^2 + a^2) . 2"dy"/"dx"(d^2y)/(dx^2) + 2x (dy/dx)^2` = 0

Cancelling `2"dy"/"dx"` throughtout, we get

`(x^2 + a^2)(d^2y)/(dx^2) + x"dy"/"dx"` = 0.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 1: Differentiation - Exercise 1.5 [पृष्ठ ६०]

संबंधित प्रश्न

Differentiate the function with respect to x.

`sqrt(((x-1)(x-2))/((x-3)(x-4)(x-5)))`


Differentiate the function with respect to x.

`(log x)^(cos x)`


Differentiate the function with respect to x.

`(x + 1/x)^x + x^((1+1/x))`


Differentiate the function with respect to x.

`(sin x)^x + sin^(-1) sqrtx` 


Find `dy/dx` for the function given in the question:

(cos x)y = (cos y)x


Find the derivative of the function given by f (x) = (1 + x) (1 + x2) (1 + x4) (1 + x8) and hence find f ′(1).


Differentiate (x2 – 5x + 8) (x3 + 7x + 9) in three ways mentioned below:

  1. by using product rule
  2. by expanding the product to obtain a single polynomial.
  3. by logarithmic differentiation.

Do they all give the same answer?


Differentiate w.r.t. x the function:

xx + xa + ax + aa, for some fixed a > 0 and x > 0


If cos y = x cos (a + y), with cos a ≠ ± 1, prove that `dy/dx = cos^2(a+y)/(sin a)`


If x = a (cos t + t sin t) and y = a (sin t – t cos t), find `(d^2y)/dx^2`


If `y = e^(acos^(-1)x)`, -1 <= x <= 1 show that `(1- x^2) (d^2y)/(dx^2) -x dy/dx - a^2y = 0`


If `y = sin^-1 x + cos^-1 x , "find"  dy/dx`


Evaluate 
`int  1/(16 - 9x^2) dx`


Find `(d^2y)/(dx^2)` , if y = log x


If `(sin "x")^"y" = "x" + "y", "find" (d"y")/(d"x")`


If xy = ex–y, then show that `"dy"/"dx" = logx/(1 + logx)^2`.


If y = `x^(x^(x^(.^(.^.∞))`, then show that `"dy"/"dx" = y^2/(x(1 - logy).`.


If ey = yx, then show that `"dy"/"dx" = (logy)^2/(log y - 1)`.


If x = esin3t, y = ecos3t, then show that `dy/dx = -(ylogx)/(xlogy)`.


If x = log(1 + t2), y = t – tan–1t,show that `"dy"/"dx" = sqrt(e^x - 1)/(2)`.


If x = sin–1(et), y = `sqrt(1 - e^(2t)), "show that"  sin x + dy/dx` = 0


If y = log (log 2x), show that xy2 + y1 (1 + xy1) = 0.


If y = `25^(log_5sin_x) + 16^(log_4cos_x)` then `("d"y)/("d"x)` = ______.


If x7 . y5 = (x + y)12, show that `("d"y)/("d"x) = y/x`


lf y = `2^(x^(2^(x^(...∞))))`, then x(1 - y logx logy)`dy/dx` = ______  


If xy = ex-y, then `"dy"/"dx"` at x = 1 is ______.


If y = tan-1 `((1 - cos 3x)/(sin 3x))`, then `"dy"/"dx"` = ______.


`"d"/"dx" [(cos x)^(log x)]` = ______.


Derivative of `log_6`x with respect 6x to is ______


`log (x + sqrt(x^2 + "a"))`


`log [log(logx^5)]`


If y = `log ((1 - x^2)/(1 + x^2))`, then `"dy"/"dx"` is equal to ______.


`lim_("x" -> 0)(1 - "cos x")/"x"^2` is equal to ____________.


`lim_("x" -> -2) sqrt ("x"^2 + 5 - 3)/("x" + 2)` is equal to ____________.


If `"f" ("x") = sqrt (1 + "cos"^2 ("x"^2)), "then the value of f'" (sqrtpi/2)` is ____________.


Given f(x) = `log((1 + x)/(1 - x))` and g(x) = `(3x + x^3)/(1 + 3x^2)`, then fog(x) equals


If y = `x^(x^2)`, then `dy/dx` is equal to ______.


If `log_10 ((x^3 - y^3)/(x^3 + y^3))` = 2 then `dy/dx` = ______.


If `log_10 ((x^2 - y^2)/(x^2 + y^2))` = 2, then `dy/dx` is equal to ______.


The derivative of x2x w.r.t. x is ______.


Evaluate:

`int log x dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×