Advertisements
Advertisements
प्रश्न
If x = esin3t, y = ecos3t, then show that `dy/dx = -(ylogx)/(xlogy)`.
उत्तर
x = esin3t, y = ecos3t
∴ log x = logesin3t, logy = logecos3t
∴ log x = (sin 3t)(log e), log y = (cos 3t)(log e)
∴ log x = sin 3t, log y = cos 3t ...(1) ... [∵ log e = 1]
Differentiating both sides w.r.t. t, we get
`(1)/x.dx/dt = d/dt(sin3t) = cos3t.d/dt(3t)`
= cos 3t x 3
= 3 cos 3t
and
`(1)/y.dy/dt = d/dt(cos 3t) = -sin3t.d/dx(3t)`
= – sin 3t x 3
= – 3 sin 3t
∴ `dx/dt = 3x cos 3t and dy/dt"= -3y sin 3t`
∴ `dy/dx = ((dy/dt))/((dx/dt)`
= `(-3y sin 3t)/(3x cos 3t)`
= `(-y sin 3t)/(x cos 3t)`
= `(-y log x)/(x log y)`. ...[By (1)]
APPEARS IN
संबंधित प्रश्न
If `y=log[x+sqrt(x^2+a^2)] ` show that `(x^2+a^2)(d^2y)/(dx^2)+xdy/dx=0`
if xx+xy+yx=ab, then find `dy/dx`.
Differentiate the function with respect to x.
`sqrt(((x-1)(x-2))/((x-3)(x-4)(x-5)))`
Differentiate the function with respect to x.
`(log x)^(cos x)`
Differentiate the function with respect to x.
`x^x - 2^(sin x)`
Find `dy/dx` for the function given in the question:
(cos x)y = (cos y)x
Find `dy/dx` for the function given in the question:
`xy = e^((x – y))`
Find the derivative of the function given by f (x) = (1 + x) (1 + x2) (1 + x4) (1 + x8) and hence find f ′(1).
If x = a (cos t + t sin t) and y = a (sin t – t cos t), find `(d^2y)/dx^2`
If `y = sin^-1 x + cos^-1 x , "find" dy/dx`
Find `dy/dx` if y = xx + 5x
Differentiate
log (1 + x2) w.r.t. tan-1 (x)
Find `(d^2y)/(dx^2)` , if y = log x
Differentiate : log (1 + x2) w.r.t. cot-1 x.
Solve the following differential equation: (3xy + y2) dx + (x2 + xy) dy = 0
If `(sin "x")^"y" = "x" + "y", "find" (d"y")/(d"x")`
If y = (log x)x + xlog x, find `"dy"/"dx".`
If `log_5((x^4 + y^4)/(x^4 - y^4)) = 2, "show that""dy"/"dx" = (12x^3)/(13y^3)`.
If xy = ex–y, then show that `"dy"/"dx" = logx/(1 + logx)^2`.
`"If" y = sqrt(logx + sqrt(log x + sqrt(log x + ... ∞))), "then show that" dy/dx = (1)/(x(2y - 1).`
If x = `asqrt(secθ - tanθ), y = asqrt(secθ + tanθ), "then show that" "dy"/"dx" = -y/x`.
If x = 2cos4(t + 3), y = 3sin4(t + 3), show that `"dy"/"dx" = -sqrt((3y)/(2x)`.
If x = sin–1(et), y = `sqrt(1 - e^(2t)), "show that" sin x + dy/dx` = 0
If x = `(2bt)/(1 + t^2), y = a((1 - t^2)/(1 + t^2)), "show that" "dx"/"dy" = -(b^2y)/(a^2x)`.
Differentiate 3x w.r.t. logx3.
If y = log (log 2x), show that xy2 + y1 (1 + xy1) = 0.
Find the nth derivative of the following : log (2x + 3)
If y = `log[sqrt((1 - cos((3x)/2))/(1 +cos((3x)/2)))]`, find `("d"y)/("d"x)`
If y = tan-1 `((1 - cos 3x)/(sin 3x))`, then `"dy"/"dx"` = ______.
`"d"/"dx" [(cos x)^(log x)]` = ______.
`8^x/x^8`
If y = `log ((1 - x^2)/(1 + x^2))`, then `"dy"/"dx"` is equal to ______.
If y = `(1 + 1/x)^x` then `(2sqrt(y_2(2) + 1/8))/((log 3/2 - 1/3))` is equal to ______.
If `log_10 ((x^3 - y^3)/(x^3 + y^3))` = 2 then `dy/dx` = ______.
Find `dy/dx`, if y = (sin x)tan x – xlog x.
The derivative of log x with respect to `1/x` is ______.
Evaluate:
`int log x dx`