हिंदी

If x = 2cos4(t + 3), y = 3sin4(t + 3), show that dydxdydx=-3y2x. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

If x = 2cos4(t + 3), y = 3sin4(t + 3), show that `"dy"/"dx" = -sqrt((3y)/(2x)`.

योग

उत्तर

x = 2cos4(t + 3), y = 3sin4(t + 3)

∴ `cos^4(t + 3) = x/(2), sin^4(t + 3) = y/(3)`

∴ `cos^2(t + 3) = sqrt((x)/(2)), sin^2(t + 3) = sqrt((y)/(3)`

∵ cos2(t + 3) + sin2(t + 3) = 1

∴ `sqrt((x)/(2)) + sqrt((y)/(3)` = 1
Differentiating x and y w.r.t. t, we get
`(1)/sqrt(2)"d"/"dx"(sqrt(x)) + (1)/sqrt(3)"d"/"dx"(sqrt(y))` = 0

∴ `(1)/sqrt(2) xx (1)/(2sqrt(x)) + (1)/sqrt(3) xx (1)/(2sqrt(y))."dy"/"dx"` = 0

∴ `(1)/(2sqrt(3).sqrt(y))."dy"/"dx" = -(1)/(2sqrt(2).sqrt(x)`

∴ `"dy"/"dx" = -(sqrt(3).sqrt(y))/(sqrt(2).sqrt(x)`

= `-sqrt((3y)/(2x)`.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 1: Differentiation - Exercise 1.4 [पृष्ठ ४८]

APPEARS IN

संबंधित प्रश्न

Differentiate the function with respect to x.

(log x)x + xlog x


Differentiate the function with respect to x.

`(sin x)^x + sin^(-1) sqrtx` 


Find `dy/dx` for the function given in the question:

`xy = e^((x – y))`


Find the derivative of the function given by f (x) = (1 + x) (1 + x2) (1 + x4) (1 + x8) and hence find f ′(1).


Differentiate w.r.t. x the function:

xx + xa + ax + aa, for some fixed a > 0 and x > 0


If `y = sin^-1 x + cos^-1 x , "find"  dy/dx`


Find `(dy)/(dx) , if y = sin ^(-1) [2^(x +1 )/(1+4^x)]`


Find `dy/dx` if y = x+ 5x


Find `"dy"/"dx"` , if `"y" = "x"^("e"^"x")`


xy = ex-y, then show that  `"dy"/"dx" = ("log  x")/("1 + log x")^2`


Find `"dy"/"dx"` if y = xx + 5x


If `"x"^(5/3) . "y"^(2/3) = ("x + y")^(7/3)` , the show that `"dy"/"dx" = "y"/"x"`


 Solve the following differential equation: (3xy + y2) dx + (x2 + xy) dy = 0 


If log (x + y) = log(xy) + p, where p is a constant, then prove that `"dy"/"dx" = (-y^2)/(x^2)`.


If `log_5((x^4 + y^4)/(x^4 - y^4)) = 2, "show that""dy"/"dx" = (12x^3)/(13y^3)`.


If xy = ex–y, then show that `"dy"/"dx" = logx/(1 + logx)^2`.


If x = esin3t, y = ecos3t, then show that `dy/dx = -(ylogx)/(xlogy)`.


If y = log (log 2x), show that xy2 + y1 (1 + xy1) = 0.


If y = `25^(log_5sin_x) + 16^(log_4cos_x)` then `("d"y)/("d"x)` = ______.


If y = log [cos(x5)] then find `("d"y)/("d"x)`


If y = `log[sqrt((1 - cos((3x)/2))/(1 +cos((3x)/2)))]`, find `("d"y)/("d"x)`


If x7 . y5 = (x + y)12, show that `("d"y)/("d"x) = y/x`


Derivative of loge2 (logx) with respect to x is _______.


lf y = `2^(x^(2^(x^(...∞))))`, then x(1 - y logx logy)`dy/dx` = ______  


`d/dx(x^{sinx})` = ______ 


If `("f"(x))/(log (sec x)) "dx"` = log(log sec x) + c, then f(x) = ______.


If y = `("e"^"2x" sin x)/(x cos x), "then" "dy"/"dx" = ?`


`log (x + sqrt(x^2 + "a"))`


If xm . yn = (x + y)m+n, prove that `"dy"/"dx" = y/x`


If y = `log ((1 - x^2)/(1 + x^2))`, then `"dy"/"dx"` is equal to ______.


`lim_("x" -> 0)(1 - "cos x")/"x"^2` is equal to ____________.


`lim_("x" -> -2) sqrt ("x"^2 + 5 - 3)/("x" + 2)` is equal to ____________.


If `"f" ("x") = sqrt (1 + "cos"^2 ("x"^2)), "then the value of f'" (sqrtpi/2)` is ____________.


If `log_10 ((x^3 - y^3)/(x^3 + y^3))` = 2 then `dy/dx` = ______.


If y = `log(x + sqrt(x^2 + 4))`, show that `dy/dx = 1/sqrt(x^2 + 4)`


The derivative of log x with respect to `1/x` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×