Advertisements
Advertisements
प्रश्न
If x = 2cos4(t + 3), y = 3sin4(t + 3), show that `"dy"/"dx" = -sqrt((3y)/(2x)`.
उत्तर
x = 2cos4(t + 3), y = 3sin4(t + 3)
∴ `cos^4(t + 3) = x/(2), sin^4(t + 3) = y/(3)`
∴ `cos^2(t + 3) = sqrt((x)/(2)), sin^2(t + 3) = sqrt((y)/(3)`
∵ cos2(t + 3) + sin2(t + 3) = 1
∴ `sqrt((x)/(2)) + sqrt((y)/(3)` = 1
Differentiating x and y w.r.t. t, we get
`(1)/sqrt(2)"d"/"dx"(sqrt(x)) + (1)/sqrt(3)"d"/"dx"(sqrt(y))` = 0
∴ `(1)/sqrt(2) xx (1)/(2sqrt(x)) + (1)/sqrt(3) xx (1)/(2sqrt(y))."dy"/"dx"` = 0
∴ `(1)/(2sqrt(3).sqrt(y))."dy"/"dx" = -(1)/(2sqrt(2).sqrt(x)`
∴ `"dy"/"dx" = -(sqrt(3).sqrt(y))/(sqrt(2).sqrt(x)`
= `-sqrt((3y)/(2x)`.
APPEARS IN
संबंधित प्रश्न
Differentiate the function with respect to x.
(log x)x + xlog x
Differentiate the function with respect to x.
`(sin x)^x + sin^(-1) sqrtx`
Find `dy/dx` for the function given in the question:
`xy = e^((x – y))`
Find the derivative of the function given by f (x) = (1 + x) (1 + x2) (1 + x4) (1 + x8) and hence find f ′(1).
Differentiate w.r.t. x the function:
xx + xa + ax + aa, for some fixed a > 0 and x > 0
If `y = sin^-1 x + cos^-1 x , "find" dy/dx`
Find `(dy)/(dx) , if y = sin ^(-1) [2^(x +1 )/(1+4^x)]`
Find `dy/dx` if y = xx + 5x
Find `"dy"/"dx"` , if `"y" = "x"^("e"^"x")`
xy = ex-y, then show that `"dy"/"dx" = ("log x")/("1 + log x")^2`
Find `"dy"/"dx"` if y = xx + 5x
If `"x"^(5/3) . "y"^(2/3) = ("x + y")^(7/3)` , the show that `"dy"/"dx" = "y"/"x"`
Solve the following differential equation: (3xy + y2) dx + (x2 + xy) dy = 0
If log (x + y) = log(xy) + p, where p is a constant, then prove that `"dy"/"dx" = (-y^2)/(x^2)`.
If `log_5((x^4 + y^4)/(x^4 - y^4)) = 2, "show that""dy"/"dx" = (12x^3)/(13y^3)`.
If xy = ex–y, then show that `"dy"/"dx" = logx/(1 + logx)^2`.
If x = esin3t, y = ecos3t, then show that `dy/dx = -(ylogx)/(xlogy)`.
If y = log (log 2x), show that xy2 + y1 (1 + xy1) = 0.
If y = `25^(log_5sin_x) + 16^(log_4cos_x)` then `("d"y)/("d"x)` = ______.
If y = log [cos(x5)] then find `("d"y)/("d"x)`
If y = `log[sqrt((1 - cos((3x)/2))/(1 +cos((3x)/2)))]`, find `("d"y)/("d"x)`
If x7 . y5 = (x + y)12, show that `("d"y)/("d"x) = y/x`
Derivative of loge2 (logx) with respect to x is _______.
lf y = `2^(x^(2^(x^(...∞))))`, then x(1 - y logx logy)`dy/dx` = ______
`d/dx(x^{sinx})` = ______
If `("f"(x))/(log (sec x)) "dx"` = log(log sec x) + c, then f(x) = ______.
If y = `("e"^"2x" sin x)/(x cos x), "then" "dy"/"dx" = ?`
`log (x + sqrt(x^2 + "a"))`
If xm . yn = (x + y)m+n, prove that `"dy"/"dx" = y/x`
If y = `log ((1 - x^2)/(1 + x^2))`, then `"dy"/"dx"` is equal to ______.
`lim_("x" -> 0)(1 - "cos x")/"x"^2` is equal to ____________.
`lim_("x" -> -2) sqrt ("x"^2 + 5 - 3)/("x" + 2)` is equal to ____________.
If `"f" ("x") = sqrt (1 + "cos"^2 ("x"^2)), "then the value of f'" (sqrtpi/2)` is ____________.
If `log_10 ((x^3 - y^3)/(x^3 + y^3))` = 2 then `dy/dx` = ______.
If y = `log(x + sqrt(x^2 + 4))`, show that `dy/dx = 1/sqrt(x^2 + 4)`
The derivative of log x with respect to `1/x` is ______.