Advertisements
Advertisements
प्रश्न
xy = ex-y, then show that `"dy"/"dx" = ("log x")/("1 + log x")^2`
उत्तर
xy = ex-y
Taking logarithm of both the sides
y log x = (x - y) log e
= x - y ...(1)
Diff. both the sides w.r.t. x ,
`"y".1/"x" + "log x" . "dy"/"dx" = 1 - "dy"/"dx"`
`therefore "log x" . "dy"/"dx" + "dy"/"dx" = 1 - "y"/"x"`
`therefore (1 + "log x") "dy"/"dx" = ("x - y")/"x"`
`therefore (1 + "log x") "dy"/dx"= (ylogx)/x` ...[by (1)]
`"dy"/"dx" = ("y log x")/("x" . (1 + "log x"))`
`= ("log x")/(1 + "log x")^2`
`[because "from (1)" "y"/"x" = 1/(1 + "log x")]`
APPEARS IN
संबंधित प्रश्न
Differentiate the function with respect to x.
`x^x - 2^(sin x)`
Differentiate the function with respect to x.
(x + 3)2 . (x + 4)3 . (x + 5)4
Differentiate the function with respect to x.
`(x cos x)^x + (x sin x)^(1/x)`
Differentiate (x2 – 5x + 8) (x3 + 7x + 9) in three ways mentioned below:
- by using product rule
- by expanding the product to obtain a single polynomial.
- by logarithmic differentiation.
Do they all give the same answer?
Evaluate
`int 1/(16 - 9x^2) dx`
If log (x + y) = log(xy) + p, where p is a constant, then prove that `"dy"/"dx" = (-y^2)/(x^2)`.
If `log_10((x^3 - y^3)/(x^3 + y^3)) = 2, "show that" "dy"/"dx" = -(99x^2)/(101y^2)`
If x = 2cos4(t + 3), y = 3sin4(t + 3), show that `"dy"/"dx" = -sqrt((3y)/(2x)`.
If x = `(2bt)/(1 + t^2), y = a((1 - t^2)/(1 + t^2)), "show that" "dx"/"dy" = -(b^2y)/(a^2x)`.
If y = `(sin x)^sin x` , then `"dy"/"dx"` = ?
If y = tan-1 `((1 - cos 3x)/(sin 3x))`, then `"dy"/"dx"` = ______.
If `("f"(x))/(log (sec x)) "dx"` = log(log sec x) + c, then f(x) = ______.
`8^x/x^8`
`log [log(logx^5)]`
If y = `log ((1 - x^2)/(1 + x^2))`, then `"dy"/"dx"` is equal to ______.
If y = `(1 + 1/x)^x` then `(2sqrt(y_2(2) + 1/8))/((log 3/2 - 1/3))` is equal to ______.
The derivative of x2x w.r.t. x is ______.
If y = `9^(log_3x)`, find `dy/dx`.