हिंदी

If log (x + y) = log(xy) + p, where p is a constant, then prove that dydxdydx=-y2x2. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

If log (x + y) = log(xy) + p, where p is a constant, then prove that dydx=-y2x2.

योग

उत्तर

log (x + y) = log(xy) + p
∴ log( x + y) = logx + logy + p
Differentiating both sides w.r.t. x, we get
1x+y.ddx(x+y)=1x+1y.dydx+0

1x+y(1+dydx)=1x+1y.dydx

1x+y+1x+y.dydx=1x+1y.dydx

(1x+y-1y)dydx=1x-1x+y

[y-x-yy(x+y)]dydx=x+y-xx(x+y)

[-xy(x+y)]dydx=yx(x+y)

(-xy)dydx=yx

dydx=-y2x2.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 1: Differentiation - Exercise 1.3 [पृष्ठ ४०]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
अध्याय 1 Differentiation
Exercise 1.3 | Q 5.01 | पृष्ठ ४०

संबंधित प्रश्न

Differentiate the function with respect to x. 

cos x . cos 2x . cos 3x


Differentiate the function with respect to x.

(logx)cosx


Differentiate the function with respect to x.

(sinx)x+sin-1x 


Differentiate the function with respect to x.

(xcosx)x+(xsinx)1x


Find dydx for the function given in the question:

yx = xy


if xmyn=(x+y)m+n, prove that d2ydx2=0


If y=sin-1x+cos-1x,find dydx


Find dydx,ify=sin-1[2x+11+4x]


Find dydx if y = x+ 5x


Differentiate  
log (1 + x2) w.r.t. tan-1 (x)


Find d2ydx2 , if y = log x


 Solve the following differential equation: (3xy + y2) dx + (x2 + xy) dy = 0 


If log5(x4+y4x4-y4)=2,show thatdydx=12x313y3.


If y=logx+logx+logx+...,then show that dydx=1x(2y-1).


If x = a cos3t, y = a sin3t, show that dydx=-(yx)13.


If x = 2cos4(t + 3), y = 3sin4(t + 3), show that dydx=-3y2x.


If y = log(x+x2+a2)m, show that (x2+a2)d2ydx2+xddx = 0.


Find the nth derivative of the following : log (ax + b)


If log5 (x4+y4x4-y4) = 2, show that dydx=12x313y2


If x7 . y5 = (x + y)12, show that dydx=yx


If y = (sinx)sinx , then dydx = ?


The rate at which the metal cools in moving air is proportional to the difference of temperatures between the metal and air. If the air temperature is 290 K and the metal temperature drops from 370 K to 330 K in 1 O min, then the time required to drop the temperature upto 295 K.


If f(x)log(secx)dx = log(log sec x) + c, then f(x) = ______.


log(x+x2+a)


log[log(logx5)]


If f(x)=1+cos2(x2),then the value of f'(π2) is ____________.


If f(x)=log[ex(3-x3+x)13],  then f(1) is equal to


If y = xx2, then dydx is equal to ______.


Derivative of log (sec θ + tan θ) with respect to sec θ at θ = π4 is ______.


The derivative of log x with respect to 1x is ______.


Evaluate:

logxdx


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×
Our website is made possible by ad-free subscriptions or displaying online advertisements to our visitors.
If you don't like ads you can support us by buying an ad-free subscription or please consider supporting us by disabling your ad blocker. Thank you.