हिंदी

Differentiate the function with respect to x. (sinx)x+sin-1x - Mathematics

Advertisements
Advertisements

प्रश्न

Differentiate the function with respect to x.

`(sin x)^x + sin^(-1) sqrtx` 

Differentiate the function `(sin x)^x + sin^(-1) sqrtx` with respect to x

योग

उत्तर

Let, y = `(sin x)^x + sin^-1 sqrtx`

gain, let y = u + v

Differentiating both sides with respect to x,

`dy/dx = (du)/dx + (dv)/dx`       ...(1)

`therefore u = (sin x)^x`

Taking logarithm of both sides,

`log u = log (sin x)^x = x log sin x`

Differentiating both sides with respect to x,

`1/u (du)/dx = x d/dx log sin x + log sin x d/dx (x)`

`= x 1/(sin x) d/dx (sin x) + log sin x xx 1`

`= x * 1/(sin x) * cos x + log sin x xx 1 = x cot x + log sin x`

`therefore (du)/dx` = u (x cot x + log sin x)

= (sin x)x [log sin x + x cot x]         ...(2)

v = `sin^-1 sqrt x`

Differentiating both sides with respect to x,

`(dv)/dx = d/dx sin^-1 sqrtx = 1/sqrt(1 - x) d/dx x^(1/2)`

`= 1/sqrt(1 - x) 1/2 x^(-1/2)`

`= 1/(2sqrtx sqrt(1 - x))`       ...(3)

Putting the values ​​of `(du)/dx` and `(dv)/dx` from equations (2) and (3) in equation (1),

`(dy)/dx = (sin x)^x [log sin x + x cot x] +  1/(2sqrtx sqrt(1 - x))` 

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 5: Continuity and Differentiability - Exercise 5.5 [पृष्ठ १७८]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
अध्याय 5 Continuity and Differentiability
Exercise 5.5 | Q 8 | पृष्ठ १७८

वीडियो ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्न

Differentiate the function with respect to x. 

cos x . cos 2x . cos 3x


Differentiate the function with respect to x.

`x^x - 2^(sin x)`


Differentiate the function with respect to x.

(x + 3)2 . (x + 4)3 . (x + 5)4


Differentiate the function with respect to x.

xsin x + (sin x)cos x


Differentiate the function with respect to x.

`(x cos x)^x + (x sin x)^(1/x)`


Find `dy/dx` for the function given in the question:

yx = xy


If ey ( x +1)  = 1, then show that  `(d^2 y)/(dx^2) = ((dy)/(dx))^2 .`


Evaluate 
`int  1/(16 - 9x^2) dx`


Find `dy/dx` if y = x+ 5x


Differentiate  
log (1 + x2) w.r.t. tan-1 (x)


Find `"dy"/"dx"` , if `"y" = "x"^("e"^"x")`


 Solve the following differential equation: (3xy + y2) dx + (x2 + xy) dy = 0 


If y = (log x)x + xlog x, find `"dy"/"dx".`


If log (x + y) = log(xy) + p, where p is a constant, then prove that `"dy"/"dx" = (-y^2)/(x^2)`.


If `log_10((x^3 - y^3)/(x^3 + y^3)) = 2, "show that" "dy"/"dx" = -(99x^2)/(101y^2)`


If `log_5((x^4 + y^4)/(x^4 - y^4)) = 2, "show that""dy"/"dx" = (12x^3)/(13y^3)`.


If ey = yx, then show that `"dy"/"dx" = (logy)^2/(log y - 1)`.


If x = a cos3t, y = a sin3t, show that `"dy"/"dx" = -(y/x)^(1/3)`.


If x = sin–1(et), y = `sqrt(1 - e^(2t)), "show that"  sin x + dy/dx` = 0


If y = `log(x + sqrt(x^2 + a^2))^m`, show that `(x^2 + a^2)(d^2y)/(dx^2) + x "d"/"dx"` = 0.


If y = `25^(log_5sin_x) + 16^(log_4cos_x)` then `("d"y)/("d"x)` = ______.


If y = `(sin x)^sin x` , then `"dy"/"dx"` = ?


The rate at which the metal cools in moving air is proportional to the difference of temperatures between the metal and air. If the air temperature is 290 K and the metal temperature drops from 370 K to 330 K in 1 O min, then the time required to drop the temperature upto 295 K.


Derivative of loge2 (logx) with respect to x is _______.


If y = tan-1 `((1 - cos 3x)/(sin 3x))`, then `"dy"/"dx"` = ______.


`d/dx(x^{sinx})` = ______ 


`"d"/"dx" [(cos x)^(log x)]` = ______.


If y = `("e"^"2x" sin x)/(x cos x), "then" "dy"/"dx" = ?`


Given f(x) = `log((1 + x)/(1 - x))` and g(x) = `(3x + x^3)/(1 + 3x^2)`, then fog(x) equals


If `log_10 ((x^3 - y^3)/(x^3 + y^3))` = 2 then `dy/dx` = ______.


If `log_10 ((x^2 - y^2)/(x^2 + y^2))` = 2, then `dy/dx` is equal to ______.


The derivative of x2x w.r.t. x is ______.


Find `dy/dx`, if y = (sin x)tan x – xlog x.


If y = `9^(log_3x)`, find `dy/dx`.


Evaluate:

`int log x dx`


Find the derivative of `y = log x + 1/x` with respect to x.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×