Advertisements
Advertisements
Questions
Differentiate the function with respect to x.
`(sin x)^x + sin^(-1) sqrtx`
Differentiate the function `(sin x)^x + sin^(-1) sqrtx` with respect to x
Solution
Let, y = `(sin x)^x + sin^-1 sqrtx`
gain, let y = u + v
Differentiating both sides with respect to x,
`dy/dx = (du)/dx + (dv)/dx` ...(1)
`therefore u = (sin x)^x`
Taking logarithm of both sides,
`log u = log (sin x)^x = x log sin x`
Differentiating both sides with respect to x,
`1/u (du)/dx = x d/dx log sin x + log sin x d/dx (x)`
`= x 1/(sin x) d/dx (sin x) + log sin x xx 1`
`= x * 1/(sin x) * cos x + log sin x xx 1 = x cot x + log sin x`
`therefore (du)/dx` = u (x cot x + log sin x)
= (sin x)x [log sin x + x cot x] ...(2)
v = `sin^-1 sqrt x`
Differentiating both sides with respect to x,
`(dv)/dx = d/dx sin^-1 sqrtx = 1/sqrt(1 - x) d/dx x^(1/2)`
`= 1/sqrt(1 - x) 1/2 x^(-1/2)`
`= 1/(2sqrtx sqrt(1 - x))` ...(3)
Putting the values of `(du)/dx` and `(dv)/dx` from equations (2) and (3) in equation (1),
`(dy)/dx = (sin x)^x [log sin x + x cot x] + 1/(2sqrtx sqrt(1 - x))`
APPEARS IN
RELATED QUESTIONS
Differentiate the function with respect to x.
`x^x - 2^(sin x)`
Differentiate the function with respect to x.
(log x)x + xlog x
Find `dy/dx`for the function given in the question:
xy + yx = 1
Find `dy/dx` for the function given in the question:
yx = xy
Find `dy/dx` for the function given in the question:
(cos x)y = (cos y)x
Find `dy/dx` for the function given in the question:
`xy = e^((x – y))`
Differentiate (x2 – 5x + 8) (x3 + 7x + 9) in three ways mentioned below:
- by using product rule
- by expanding the product to obtain a single polynomial.
- by logarithmic differentiation.
Do they all give the same answer?
If u, v and w are functions of x, then show that `d/dx(u.v.w) = (du)/dx v.w+u. (dv)/dx.w + u.v. (dw)/dx` in two ways-first by repeated application of product rule, second by logarithmic differentiation.
If x = a (cos t + t sin t) and y = a (sin t – t cos t), find `(d^2y)/dx^2`
Evaluate
`int 1/(16 - 9x^2) dx`
Find `dy/dx` if y = xx + 5x
xy = ex-y, then show that `"dy"/"dx" = ("log x")/("1 + log x")^2`
Differentiate : log (1 + x2) w.r.t. cot-1 x.
Find `"dy"/"dx"` if y = xx + 5x
If y = (log x)x + xlog x, find `"dy"/"dx".`
If log (x + y) = log(xy) + p, where p is a constant, then prove that `"dy"/"dx" = (-y^2)/(x^2)`.
If xy = ex–y, then show that `"dy"/"dx" = logx/(1 + logx)^2`.
If y = `x^(x^(x^(.^(.^.∞))`, then show that `"dy"/"dx" = y^2/(x(1 - logy).`.
If x = `asqrt(secθ - tanθ), y = asqrt(secθ + tanθ), "then show that" "dy"/"dx" = -y/x`.
If x = esin3t, y = ecos3t, then show that `dy/dx = -(ylogx)/(xlogy)`.
If x = a cos3t, y = a sin3t, show that `"dy"/"dx" = -(y/x)^(1/3)`.
If x = 2cos4(t + 3), y = 3sin4(t + 3), show that `"dy"/"dx" = -sqrt((3y)/(2x)`.
Find the second order derivatives of the following : log(logx)
If y = `log[sqrt((1 - cos((3x)/2))/(1 +cos((3x)/2)))]`, find `("d"y)/("d"x)`
If x7 . y5 = (x + y)12, show that `("d"y)/("d"x) = y/x`
`"d"/"dx" [(cos x)^(log x)]` = ______.
If `("f"(x))/(log (sec x)) "dx"` = log(log sec x) + c, then f(x) = ______.
`log [log(logx^5)]`
If `"f" ("x") = sqrt (1 + "cos"^2 ("x"^2)), "then the value of f'" (sqrtpi/2)` is ____________.
If `f(x) = log [e^x ((3 - x)/(3 + x))^(1/3)]`, then `f^'(1)` is equal to
If y = `(1 + 1/x)^x` then `(2sqrt(y_2(2) + 1/8))/((log 3/2 - 1/3))` is equal to ______.
If `log_10 ((x^3 - y^3)/(x^3 + y^3))` = 2 then `dy/dx` = ______.
If y = `9^(log_3x)`, find `dy/dx`.
The derivative of log x with respect to `1/x` is ______.