Advertisements
Advertisements
Question
Differentiate : log (1 + x2) w.r.t. cot-1 x.
Solution
Let u =log (1 + x2)
v = cot-1 x
To differentiate log ( 1 + x2) w.r.t. cot-1 x is to find `"du"/"dv"`
Here u =log (1 + x2J and u = cot-1 x,
where x is a parameter.
Differentiating w.r.t. x,
`"du"/"dx" = 1/(1 + "x"^2) xx "2x" , "dv"/"dx" = (-1)/(1 + "x"^2)`
`therefore "du"/"dv" = (("du"/"dx"))/(("dv"/"dx")) , "du"/"dx" != 0`
`= (("2x")/(1+"x"^2))/((-1)/(1 + "x"^2)) = "-2x"`
APPEARS IN
RELATED QUESTIONS
If `y=log[x+sqrt(x^2+a^2)] ` show that `(x^2+a^2)(d^2y)/(dx^2)+xdy/dx=0`
Differentiate the function with respect to x.
(x + 3)2 . (x + 4)3 . (x + 5)4
Differentiate the function with respect to x.
`(x cos x)^x + (x sin x)^(1/x)`
Find `dy/dx` for the function given in the question:
(cos x)y = (cos y)x
Find `dy/dx` if y = xx + 5x
xy = ex-y, then show that `"dy"/"dx" = ("log x")/("1 + log x")^2`
Solve the following differential equation: (3xy + y2) dx + (x2 + xy) dy = 0
If log (x + y) = log(xy) + p, where p is a constant, then prove that `"dy"/"dx" = (-y^2)/(x^2)`.
If y = `x^(x^(x^(.^(.^.∞))`, then show that `"dy"/"dx" = y^2/(x(1 - logy).`.
If x = `asqrt(secθ - tanθ), y = asqrt(secθ + tanθ), "then show that" "dy"/"dx" = -y/x`.
If x = log(1 + t2), y = t – tan–1t,show that `"dy"/"dx" = sqrt(e^x - 1)/(2)`.
Differentiate 3x w.r.t. logx3.
If y = `log[sqrt((1 - cos((3x)/2))/(1 +cos((3x)/2)))]`, find `("d"y)/("d"x)`
If log5 `((x^4 + "y"^4)/(x^4 - "y"^4))` = 2, show that `("dy")/("d"x) = (12x^3)/(13"y"^2)`
lf y = `2^(x^(2^(x^(...∞))))`, then x(1 - y logx logy)`dy/dx` = ______
`"d"/"dx" [(cos x)^(log x)]` = ______.
`8^x/x^8`
If xm . yn = (x + y)m+n, prove that `"dy"/"dx" = y/x`
The derivative of log x with respect to `1/x` is ______.
Evaluate:
`int log x dx`