Advertisements
Advertisements
Question
`8^x/x^8`
Solution
Let y = `8^x/x^8`
Taking log on both sides, we get,
log y = `log 8^x/x^8`
⇒ log y = `log 8^x - log x^8`
⇒ log y = x log 8 – 8 log x
Differentiating both sides w.r.t. x
⇒ `1/y * "dy"/"dx" = log 8.1 - 8/x`
⇒ `"dy"/"dx" = y [log 8 - 8/x]`
Hence, `"dy"/"dx" = 8^x/x^8 [log 8 - 8/x]`
APPEARS IN
RELATED QUESTIONS
Differentiate the function with respect to x.
`sqrt(((x-1)(x-2))/((x-3)(x-4)(x-5)))`
Differentiate the function with respect to x.
`(log x)^(cos x)`
Differentiate the function with respect to x.
`x^x - 2^(sin x)`
Differentiate the function with respect to x.
`x^(xcosx) + (x^2 + 1)/(x^2 -1)`
Find `dy/dx` for the function given in the question:
yx = xy
Find `dy/dx` for the function given in the question:
(cos x)y = (cos y)x
Find the derivative of the function given by f (x) = (1 + x) (1 + x2) (1 + x4) (1 + x8) and hence find f ′(1).
Evaluate
`int 1/(16 - 9x^2) dx`
Find `dy/dx` if y = xx + 5x
Solve the following differential equation: (3xy + y2) dx + (x2 + xy) dy = 0
If y = (log x)x + xlog x, find `"dy"/"dx".`
If `log_5((x^4 + y^4)/(x^4 - y^4)) = 2, "show that""dy"/"dx" = (12x^3)/(13y^3)`.
If xy = ex–y, then show that `"dy"/"dx" = logx/(1 + logx)^2`.
If x = esin3t, y = ecos3t, then show that `dy/dx = -(ylogx)/(xlogy)`.
If x = log(1 + t2), y = t – tan–1t,show that `"dy"/"dx" = sqrt(e^x - 1)/(2)`.
Differentiate 3x w.r.t. logx3.
Find the second order derivatives of the following : log(logx)
If y = A cos (log x) + B sin (log x), show that x2y2 + xy1 + y = 0.
If y = `25^(log_5sin_x) + 16^(log_4cos_x)` then `("d"y)/("d"x)` = ______.
If y = `log[sqrt((1 - cos((3x)/2))/(1 +cos((3x)/2)))]`, find `("d"y)/("d"x)`
`"d"/"dx" [(cos x)^(log x)]` = ______.
`lim_("x" -> -2) sqrt ("x"^2 + 5 - 3)/("x" + 2)` is equal to ____________.
If `"f" ("x") = sqrt (1 + "cos"^2 ("x"^2)), "then the value of f'" (sqrtpi/2)` is ____________.
If `"y" = "e"^(1/2log (1 + "tan"^2"x")), "then" "dy"/"dx"` is equal to ____________.
If `log_10 ((x^3 - y^3)/(x^3 + y^3))` = 2 then `dy/dx` = ______.
Find `dy/dx`, if y = (log x)x.
Find the derivative of `y = log x + 1/x` with respect to x.