English

8xx8 - Mathematics

Advertisements
Advertisements

Question

`8^x/x^8`

Sum

Solution

Let y = `8^x/x^8`

Taking log on both sides, we get,

log y = `log  8^x/x^8`

⇒ log y = `log 8^x - log x^8`

⇒ log y = x log 8 – 8 log x

Differentiating both sides w.r.t. x

⇒ `1/y * "dy"/"dx" = log 8.1 - 8/x`

⇒ `"dy"/"dx" = y [log 8 - 8/x]`

Hence, `"dy"/"dx" = 8^x/x^8 [log 8 - 8/x]`

shaalaa.com
  Is there an error in this question or solution?
Chapter 5: Continuity And Differentiability - Exercise [Page 109]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 12
Chapter 5 Continuity And Differentiability
Exercise | Q 26 | Page 109

RELATED QUESTIONS

Differentiate the function with respect to x.

`sqrt(((x-1)(x-2))/((x-3)(x-4)(x-5)))`


Differentiate the function with respect to x.

`(log x)^(cos x)`


Differentiate the function with respect to x.

`x^x - 2^(sin x)`


Differentiate the function with respect to x.

`x^(xcosx) + (x^2 + 1)/(x^2 -1)`


Find `dy/dx` for the function given in the question:

yx = xy


Find `dy/dx` for the function given in the question:

(cos x)y = (cos y)x


Find the derivative of the function given by f (x) = (1 + x) (1 + x2) (1 + x4) (1 + x8) and hence find f ′(1).


Evaluate 
`int  1/(16 - 9x^2) dx`


Find `dy/dx` if y = x+ 5x


 Solve the following differential equation: (3xy + y2) dx + (x2 + xy) dy = 0 


If y = (log x)x + xlog x, find `"dy"/"dx".`


If `log_5((x^4 + y^4)/(x^4 - y^4)) = 2, "show that""dy"/"dx" = (12x^3)/(13y^3)`.


If xy = ex–y, then show that `"dy"/"dx" = logx/(1 + logx)^2`.


If x = esin3t, y = ecos3t, then show that `dy/dx = -(ylogx)/(xlogy)`.


If x = log(1 + t2), y = t – tan–1t,show that `"dy"/"dx" = sqrt(e^x - 1)/(2)`.


Differentiate 3x w.r.t. logx3.


Find the second order derivatives of the following : log(logx)


If y = A cos (log x) + B sin (log x), show that x2y2 + xy1 + y = 0.


If y = `25^(log_5sin_x) + 16^(log_4cos_x)` then `("d"y)/("d"x)` = ______.


If y = `log[sqrt((1 - cos((3x)/2))/(1 +cos((3x)/2)))]`, find `("d"y)/("d"x)`


`"d"/"dx" [(cos x)^(log x)]` = ______.


`lim_("x" -> -2) sqrt ("x"^2 + 5 - 3)/("x" + 2)` is equal to ____________.


If `"f" ("x") = sqrt (1 + "cos"^2 ("x"^2)), "then the value of f'" (sqrtpi/2)` is ____________.


If `"y" = "e"^(1/2log (1 +  "tan"^2"x")), "then"  "dy"/"dx"` is equal to ____________.


If `log_10 ((x^3 - y^3)/(x^3 + y^3))` = 2 then `dy/dx` = ______.


Find `dy/dx`, if y = (log x)x.


Find the derivative of `y = log x + 1/x` with respect to x.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×