Advertisements
Advertisements
Question
Evaluate
`int 1/(16 - 9x^2) dx`
Solution
I = `int 1/(16 - 9x^2) dx`
I = `int 1/(sqrt(16(1 - (9x^2)/16))) dx`
I = `int 1/(4 sqrt(1 - (3x/4)^2)) dx`
∴ t = `3x/4`
dt = `3/4` dx
`4/3 dt = dx`
I = `1/(cancel(4) sqrt(1 - t^2)) cancel(4)/3 dt`.
I = `1/3 int 1/sqrt(1 - t^2) dt`
∴ t = sin u
dt = cos u du
I = `1/3 int 1/sqrt(1 - sin^2 u) . cos u du`
I = `1/3 int 1/sqrt(cos^(2) u). cos u du`.........(sin2u + cos2u = 1. ∴cos2u = 1 - sin2u)
I = `1/3 int (cancel(cos u)/cancel(cos u)) du.`
I = `1/3 int 1 du`
I = `1/3 u`
I = `1/3 sin t` ......(∴ t = sin u u = sin t)
I = `1/3 sin ((3x)/4) + C .....(∴ t = 3x/4)`
APPEARS IN
RELATED QUESTIONS
Differentiate the function with respect to x.
`x^(xcosx) + (x^2 + 1)/(x^2 -1)`
Find `dy/dx` for the function given in the question:
`xy = e^((x – y))`
Find the derivative of the function given by f (x) = (1 + x) (1 + x2) (1 + x4) (1 + x8) and hence find f ′(1).
If cos y = x cos (a + y), with cos a ≠ ± 1, prove that `dy/dx = cos^2(a+y)/(sin a)`
If `y = sin^-1 x + cos^-1 x , "find" dy/dx`
If ey ( x +1) = 1, then show that `(d^2 y)/(dx^2) = ((dy)/(dx))^2 .`
If `"x"^(5/3) . "y"^(2/3) = ("x + y")^(7/3)` , the show that `"dy"/"dx" = "y"/"x"`
If log (x + y) = log(xy) + p, where p is a constant, then prove that `"dy"/"dx" = (-y^2)/(x^2)`.
If `log_5((x^4 + y^4)/(x^4 - y^4)) = 2, "show that""dy"/"dx" = (12x^3)/(13y^3)`.
Find the second order derivatives of the following : x3.logx
If y = `log[4^(2x)((x^2 + 5)/sqrt(2x^3 - 4))^(3/2)]`, find `("d"y)/("d"x)`
If x7 . y5 = (x + y)12, show that `("d"y)/("d"x) = y/x`
Derivative of `log_6`x with respect 6x to is ______
If xm . yn = (x + y)m+n, prove that `"dy"/"dx" = y/x`
If y = `x^(x^2)`, then `dy/dx` is equal to ______.
The derivative of log x with respect to `1/x` is ______.
Find `dy/dx`, if y = (log x)x.