Advertisements
Advertisements
Question
If `y = sin^-1 x + cos^-1 x , "find" dy/dx`
Solution
`y = pi/2 ⇒ dy/dx = 0`
APPEARS IN
RELATED QUESTIONS
Differentiate the function with respect to x.
cos x . cos 2x . cos 3x
Find `dy/dx` for the function given in the question:
`xy = e^((x – y))`
If u, v and w are functions of x, then show that `d/dx(u.v.w) = (du)/dx v.w+u. (dv)/dx.w + u.v. (dw)/dx` in two ways-first by repeated application of product rule, second by logarithmic differentiation.
If cos y = x cos (a + y), with cos a ≠ ± 1, prove that `dy/dx = cos^2(a+y)/(sin a)`
If x = a (cos t + t sin t) and y = a (sin t – t cos t), find `(d^2y)/dx^2`
Find `(dy)/(dx) , if y = sin ^(-1) [2^(x +1 )/(1+4^x)]`
Evaluate
`int 1/(16 - 9x^2) dx`
If `"x"^(5/3) . "y"^(2/3) = ("x + y")^(7/3)` , the show that `"dy"/"dx" = "y"/"x"`
If `log_10((x^3 - y^3)/(x^3 + y^3)) = 2, "show that" "dy"/"dx" = -(99x^2)/(101y^2)`
`"If" y = sqrt(logx + sqrt(log x + sqrt(log x + ... ∞))), "then show that" dy/dx = (1)/(x(2y - 1).`
If x = `asqrt(secθ - tanθ), y = asqrt(secθ + tanθ), "then show that" "dy"/"dx" = -y/x`.
If x = esin3t, y = ecos3t, then show that `dy/dx = -(ylogx)/(xlogy)`.
If x = 2cos4(t + 3), y = 3sin4(t + 3), show that `"dy"/"dx" = -sqrt((3y)/(2x)`.
If y = log [cos(x5)] then find `("d"y)/("d"x)`
If y = `log[4^(2x)((x^2 + 5)/sqrt(2x^3 - 4))^(3/2)]`, find `("d"y)/("d"x)`
If y = `{f(x)}^{phi(x)}`, then `dy/dx` is ______
`d/dx(x^{sinx})` = ______
Derivative of `log_6`x with respect 6x to is ______
`2^(cos^(2_x)`
`log (x + sqrt(x^2 + "a"))`
`lim_("x" -> 0)(1 - "cos x")/"x"^2` is equal to ____________.
`lim_("x" -> -2) sqrt ("x"^2 + 5 - 3)/("x" + 2)` is equal to ____________.
Given f(x) = `log((1 + x)/(1 - x))` and g(x) = `(3x + x^3)/(1 + 3x^2)`, then fog(x) equals
If y = `x^(x^2)`, then `dy/dx` is equal to ______.
If `log_10 ((x^3 - y^3)/(x^3 + y^3))` = 2 then `dy/dx` = ______.